Abstract

We present a straightforward procedure for frequency domain modeling of reradiation in a highly scattering medium with an arbitrary, finite three-dimensional geometry. We use a finite difference numerical solver to determine the fluence distribution at the excitation wavelength, which is then coupled to the emission wavelength with an array of equivalent reradiating sources. We then calculate the fluence distribution at the emission wavelength with a second, independent numerical simulation with new optical parameters appropriate to the emission wavelength, using the distributed reradiating sources as the excitation. We compare three-dimensional simulations of a fluorophore distributed in a scattering medium with experimental data. We also compare simulations of the Raman reradiation of small diamonds in a scattering medium with experiment.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumors and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
    [CrossRef]
  2. G. C. Guilbault, Practical Fluorescence (Marcel Dekker, New York, 1990), pp. 5–21.
  3. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 457–459.
  4. R. Alfano, D. Tata, J. Cordeso, P. Tomashefsky, F. Longo, M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
    [CrossRef]
  5. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
    [CrossRef]
  6. Y. Park, R. Dasari, M. Feld, “Time-resolved UV fluorescence spectroscopy of aorta using 320 nm excitation,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 499–504 (1990).
    [CrossRef]
  7. S. Andersson-Engels, J. Johansson, S. Svanberg, “Medical diagnostic system based on simultaneous multispectral fluorescence imaging,” Appl. Opt. 33, 8022–8029 (1994).
    [CrossRef] [PubMed]
  8. R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).
  9. S. Zheng, A. T. Tu, “Raman spectroscopic identification of bilirubin-type gallstone,” Appl. Spectrosc. 40, 1099–1103 (1986).
    [CrossRef]
  10. R. P. Rava, J. J. Baraga, M. S. Feld, “Near infrared Fourier transform Raman spectroscopy of human artery,” Spectrochim. Acta Part A 47, 509–512 (1991).
    [CrossRef]
  11. C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
    [CrossRef]
  12. J. J. Baraga, M. S. Feld, R. P. Rava, “In situ optical histochemistry of human artery using near infrared Fourier transform Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 89, 3473–3477 (1992).
    [CrossRef]
  13. Y. Ozaki, A. Mizuno, “Raman and FT-IR studies of ocular tissues,” in Laser Applications in Life Sciences, S. A. Akhmanov, M. Y. Povoshina, eds., Proc. SPIE1403, 710–719 (1991).
    [CrossRef]
  14. C. A. Thompson, J. S. Reynolds, F. P. LaPlant, D. Ben-Amotz, K. J. Webb, “Raman spectroscopic studies of diamond in Intralipid,” Opt. Lett. 20, 1195–1197 (1995).
    [CrossRef] [PubMed]
  15. C. A. Thompson, F. P. LaPlant, J. S. Reynolds, D. Ben-Amotz, K. J. Webb, “Detection of heterogeneities within a scattering medium using Raman spectroscopy,” in Optical Engineering Midwest ’95, R. P. Guzik, ed., Proc. SPIE2622, 400–404 (1995).
  16. B. Wilson, E. Sevick, M. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
    [CrossRef]
  17. B. Chance, M. Maris, J. Sorge, M. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 481–491 (1990).
    [CrossRef]
  18. J. Wu, M. Feld, R. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
    [CrossRef] [PubMed]
  19. M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60, 61, 281–286 (1994).
    [CrossRef]
  20. A. Durkin, S. Jaikumar, N. Ramanujam, R. Richards-Kortum, “Relation between fluorescence spectra of dilute and turbid samples,” Appl. Opt. 33, 414–423 (1994).
    [CrossRef] [PubMed]
  21. E. M. Sevick, C. L. Burch, “Origin of phosphorescence signals reemitted from tissues,” Opt. Lett. 19, 1928–1930 (1994).
    [CrossRef]
  22. C. L. Hutchinson, T. L. Troy, E. M. Sevick, “Fluorescence-lifetime determination in tissues or other scattering media from measurements of excitation and emission kinetics,” Appl. Opt. 35, 2325–2332 (1996).
    [CrossRef] [PubMed]
  23. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  24. B. W. Pogue, M. S. Patterson, “Forward and inverse calculations for near-infrared imaging using multigrid finite difference method,” in Digest of Symposium on Photon Migration (Optical Society of America, Washington, D.C., 1994), pp. 176–180.
  25. B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assesment of a simple system for frequency domain diffuse otpical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
    [CrossRef] [PubMed]
  26. J. C. Adams, Multigrid Software for Elliptic Partial Differential Equations (National Center for Atmospheric Research, Boulder, Colo., 1991).
  27. J. C. Adams, “mudpack: Multigrid portable fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
    [CrossRef]
  28. J. Reynolds, S. Yeung, A. Przadka, K. Webb, “Optical diffusion imaging: a comparative numerical and experimental study,” Appl. Opt. 35, 3671–3679 (1996).
    [CrossRef] [PubMed]
  29. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gement, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  30. I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of Intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1927–1930 (1989).
    [CrossRef]
  31. F. A. LaPlant, D. Ben-Amotz, “Design and construction of a microscope-based Raman system,” Rev. Sci. Instrum. 66, 3537–3544 (1995).
    [CrossRef]

1996

1995

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assesment of a simple system for frequency domain diffuse otpical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

F. A. LaPlant, D. Ben-Amotz, “Design and construction of a microscope-based Raman system,” Rev. Sci. Instrum. 66, 3537–3544 (1995).
[CrossRef]

C. A. Thompson, J. S. Reynolds, F. P. LaPlant, D. Ben-Amotz, K. J. Webb, “Raman spectroscopic studies of diamond in Intralipid,” Opt. Lett. 20, 1195–1197 (1995).
[CrossRef] [PubMed]

1994

1993

1992

J. J. Baraga, M. S. Feld, R. P. Rava, “In situ optical histochemistry of human artery using near infrared Fourier transform Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 89, 3473–3477 (1992).
[CrossRef]

B. Wilson, E. Sevick, M. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

1991

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

R. P. Rava, J. J. Baraga, M. S. Feld, “Near infrared Fourier transform Raman spectroscopy of human artery,” Spectrochim. Acta Part A 47, 509–512 (1991).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gement, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

1990

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumors and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

1989

J. C. Adams, “mudpack: Multigrid portable fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of Intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1927–1930 (1989).
[CrossRef]

1987

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

1986

1984

R. Alfano, D. Tata, J. Cordeso, P. Tomashefsky, F. Longo, M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Adams, J. C.

J. C. Adams, “mudpack: Multigrid portable fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

J. C. Adams, Multigrid Software for Elliptic Partial Differential Equations (National Center for Atmospheric Research, Boulder, Colo., 1991).

Akins, D. L.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

Alfano, M.

R. Alfano, D. Tata, J. Cordeso, P. Tomashefsky, F. Longo, M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Alfano, R.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

R. Alfano, D. Tata, J. Cordeso, P. Tomashefsky, F. Longo, M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Alfano, R. R.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

Andersson-Engels, S.

S. Andersson-Engels, J. Johansson, S. Svanberg, “Medical diagnostic system based on simultaneous multispectral fluorescence imaging,” Appl. Opt. 33, 8022–8029 (1994).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumors and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

Baraga, J. J.

J. J. Baraga, M. S. Feld, R. P. Rava, “In situ optical histochemistry of human artery using near infrared Fourier transform Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 89, 3473–3477 (1992).
[CrossRef]

R. P. Rava, J. J. Baraga, M. S. Feld, “Near infrared Fourier transform Raman spectroscopy of human artery,” Spectrochim. Acta Part A 47, 509–512 (1991).
[CrossRef]

Ben-Amotz, D.

F. A. LaPlant, D. Ben-Amotz, “Design and construction of a microscope-based Raman system,” Rev. Sci. Instrum. 66, 3537–3544 (1995).
[CrossRef]

C. A. Thompson, J. S. Reynolds, F. P. LaPlant, D. Ben-Amotz, K. J. Webb, “Raman spectroscopic studies of diamond in Intralipid,” Opt. Lett. 20, 1195–1197 (1995).
[CrossRef] [PubMed]

C. A. Thompson, F. P. LaPlant, J. S. Reynolds, D. Ben-Amotz, K. J. Webb, “Detection of heterogeneities within a scattering medium using Raman spectroscopy,” in Optical Engineering Midwest ’95, R. P. Guzik, ed., Proc. SPIE2622, 400–404 (1995).

Boas, D.

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60, 61, 281–286 (1994).
[CrossRef]

Burch, C. L.

Cellmer, E.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

Chance, B.

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60, 61, 281–286 (1994).
[CrossRef]

B. Wilson, E. Sevick, M. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

B. Chance, M. Maris, J. Sorge, M. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 481–491 (1990).
[CrossRef]

Choy, D.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Cleary, J.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

Cordeso, J.

R. Alfano, D. Tata, J. Cordeso, P. Tomashefsky, F. Longo, M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Dasari, R.

Y. Park, R. Dasari, M. Feld, “Time-resolved UV fluorescence spectroscopy of aorta using 320 nm excitation,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 499–504 (1990).
[CrossRef]

Dawson, J. B.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of Intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1927–1930 (1989).
[CrossRef]

Decelbaum, L. I.

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

Driver, I.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of Intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1927–1930 (1989).
[CrossRef]

Durkin, A.

Feather, J. W.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of Intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1927–1930 (1989).
[CrossRef]

Feld, M.

J. Wu, M. Feld, R. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl. Opt. 32, 3585–3595 (1993).
[CrossRef] [PubMed]

Y. Park, R. Dasari, M. Feld, “Time-resolved UV fluorescence spectroscopy of aorta using 320 nm excitation,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 499–504 (1990).
[CrossRef]

Feld, M. S.

J. J. Baraga, M. S. Feld, R. P. Rava, “In situ optical histochemistry of human artery using near infrared Fourier transform Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 89, 3473–3477 (1992).
[CrossRef]

R. P. Rava, J. J. Baraga, M. S. Feld, “Near infrared Fourier transform Raman spectroscopy of human artery,” Spectrochim. Acta Part A 47, 509–512 (1991).
[CrossRef]

Glassman, W. L. S.

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

Guilbault, G. C.

G. C. Guilbault, Practical Fluorescence (Marcel Dekker, New York, 1990), pp. 5–21.

Hutchinson, C. L.

Jaikumar, S.

Jiang, H.

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assesment of a simple system for frequency domain diffuse otpical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

Johansson, J.

S. Andersson-Engels, J. Johansson, S. Svanberg, “Medical diagnostic system based on simultaneous multispectral fluorescence imaging,” Appl. Opt. 33, 8022–8029 (1994).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumors and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

King, P. R.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of Intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1927–1930 (1989).
[CrossRef]

Lam, W.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

LaPlant, F. A.

F. A. LaPlant, D. Ben-Amotz, “Design and construction of a microscope-based Raman system,” Rev. Sci. Instrum. 66, 3537–3544 (1995).
[CrossRef]

LaPlant, F. P.

C. A. Thompson, J. S. Reynolds, F. P. LaPlant, D. Ben-Amotz, K. J. Webb, “Raman spectroscopic studies of diamond in Intralipid,” Opt. Lett. 20, 1195–1197 (1995).
[CrossRef] [PubMed]

C. A. Thompson, F. P. LaPlant, J. S. Reynolds, D. Ben-Amotz, K. J. Webb, “Detection of heterogeneities within a scattering medium using Raman spectroscopy,” in Optical Engineering Midwest ’95, R. P. Guzik, ed., Proc. SPIE2622, 400–404 (1995).

Liu, C. H.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

Longo, F.

R. Alfano, D. Tata, J. Cordeso, P. Tomashefsky, F. Longo, M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Maris, M.

B. Chance, M. Maris, J. Sorge, M. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 481–491 (1990).
[CrossRef]

Mizuno, A.

Y. Ozaki, A. Mizuno, “Raman and FT-IR studies of ocular tissues,” in Laser Applications in Life Sciences, S. A. Akhmanov, M. Y. Povoshina, eds., Proc. SPIE1403, 710–719 (1991).
[CrossRef]

Moes, C. J. M.

O’Brien, K.

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

O’Leary, M.

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60, 61, 281–286 (1994).
[CrossRef]

Opher, E.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Ozaki, Y.

Y. Ozaki, A. Mizuno, “Raman and FT-IR studies of ocular tissues,” in Laser Applications in Life Sciences, S. A. Akhmanov, M. Y. Povoshina, eds., Proc. SPIE1403, 710–719 (1991).
[CrossRef]

Park, Y.

Y. Park, R. Dasari, M. Feld, “Time-resolved UV fluorescence spectroscopy of aorta using 320 nm excitation,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 499–504 (1990).
[CrossRef]

Patterson, M.

B. Wilson, E. Sevick, M. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Patterson, M. S.

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assesment of a simple system for frequency domain diffuse otpical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, “Forward and inverse calculations for near-infrared imaging using multigrid finite difference method,” in Digest of Symposium on Photon Migration (Optical Society of America, Washington, D.C., 1994), pp. 176–180.

Paulsen, K. D.

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assesment of a simple system for frequency domain diffuse otpical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assesment of a simple system for frequency domain diffuse otpical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

B. W. Pogue, M. S. Patterson, “Forward and inverse calculations for near-infrared imaging using multigrid finite difference method,” in Digest of Symposium on Photon Migration (Optical Society of America, Washington, D.C., 1994), pp. 176–180.

Pradhan, A.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Prahl, S. A.

Prudente, R.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

Przadka, A.

Ramanujam, N.

Rava, R.

Rava, R. P.

J. J. Baraga, M. S. Feld, R. P. Rava, “In situ optical histochemistry of human artery using near infrared Fourier transform Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 89, 3473–3477 (1992).
[CrossRef]

R. P. Rava, J. J. Baraga, M. S. Feld, “Near infrared Fourier transform Raman spectroscopy of human artery,” Spectrochim. Acta Part A 47, 509–512 (1991).
[CrossRef]

Reynolds, J.

Reynolds, J. S.

C. A. Thompson, J. S. Reynolds, F. P. LaPlant, D. Ben-Amotz, K. J. Webb, “Raman spectroscopic studies of diamond in Intralipid,” Opt. Lett. 20, 1195–1197 (1995).
[CrossRef] [PubMed]

C. A. Thompson, F. P. LaPlant, J. S. Reynolds, D. Ben-Amotz, K. J. Webb, “Detection of heterogeneities within a scattering medium using Raman spectroscopy,” in Optical Engineering Midwest ’95, R. P. Guzik, ed., Proc. SPIE2622, 400–404 (1995).

Richards-Kortum, R.

Scott, J.

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

Sevick, E.

B. Wilson, E. Sevick, M. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Sevick, E. M.

Sha, W. L.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

Sorge, J.

B. Chance, M. Maris, J. Sorge, M. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 481–491 (1990).
[CrossRef]

Stenram, U.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumors and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

Stetz, M. L.

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

Svanberg, K.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumors and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

Svanberg, S.

S. Andersson-Engels, J. Johansson, S. Svanberg, “Medical diagnostic system based on simultaneous multispectral fluorescence imaging,” Appl. Opt. 33, 8022–8029 (1994).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumors and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

Tang, G.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Tata, D.

R. Alfano, D. Tata, J. Cordeso, P. Tomashefsky, F. Longo, M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Thompson, C. A.

C. A. Thompson, J. S. Reynolds, F. P. LaPlant, D. Ben-Amotz, K. J. Webb, “Raman spectroscopic studies of diamond in Intralipid,” Opt. Lett. 20, 1195–1197 (1995).
[CrossRef] [PubMed]

C. A. Thompson, F. P. LaPlant, J. S. Reynolds, D. Ben-Amotz, K. J. Webb, “Detection of heterogeneities within a scattering medium using Raman spectroscopy,” in Optical Engineering Midwest ’95, R. P. Guzik, ed., Proc. SPIE2622, 400–404 (1995).

Tomashefsky, P.

R. Alfano, D. Tata, J. Cordeso, P. Tomashefsky, F. Longo, M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

Troy, T. L.

Tu, A. T.

van Gement, M. J. C.

van Marie, J.

van Staveren, H. J.

Webb, K.

Webb, K. J.

C. A. Thompson, J. S. Reynolds, F. P. LaPlant, D. Ben-Amotz, K. J. Webb, “Raman spectroscopic studies of diamond in Intralipid,” Opt. Lett. 20, 1195–1197 (1995).
[CrossRef] [PubMed]

C. A. Thompson, F. P. LaPlant, J. S. Reynolds, D. Ben-Amotz, K. J. Webb, “Detection of heterogeneities within a scattering medium using Raman spectroscopy,” in Optical Engineering Midwest ’95, R. P. Guzik, ed., Proc. SPIE2622, 400–404 (1995).

Wilson, B.

B. Wilson, E. Sevick, M. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Wu, J.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 457–459.

Yeung, S.

Yodh, A.

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60, 61, 281–286 (1994).
[CrossRef]

Zhang, M.

B. Chance, M. Maris, J. Sorge, M. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 481–491 (1990).
[CrossRef]

Zheng, S.

Zhu, H. R.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

Appl. Math. Comput.

J. C. Adams, “mudpack: Multigrid portable fortran software for the efficient solution of linear elliptic partial differential equations,” Appl. Math. Comput. 34, 113–146 (1989).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

IEEE J. Quantum Electron.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumors and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

R. Alfano, D. Tata, J. Cordeso, P. Tomashefsky, F. Longo, M. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE J. Quantum Electron. 20, 1507–1511 (1984).
[CrossRef]

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

J. Lumin.

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60, 61, 281–286 (1994).
[CrossRef]

Lasers Life Sci.

R. R. Alfano, C. H. Liu, W. L. Sha, H. R. Zhu, D. L. Akins, J. Cleary, R. Prudente, E. Cellmer, “Human breast tissues studied by IR Fourier transform Raman spectroscopy,” Lasers Life Sci. 4, 23–28 (1991).

Opt. Lett.

Phys. Med. Biol.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of aqueous suspensions of Intralipid, a fat emulsion,” Phys. Med. Biol. 34, 1927–1930 (1989).
[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assesment of a simple system for frequency domain diffuse otpical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).
[CrossRef] [PubMed]

Proc. IEEE

B. Wilson, E. Sevick, M. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992).
[CrossRef]

Proc. Natl. Acad. Sci. USA

J. J. Baraga, M. S. Feld, R. P. Rava, “In situ optical histochemistry of human artery using near infrared Fourier transform Raman spectroscopy,” Proc. Natl. Acad. Sci. USA 89, 3473–3477 (1992).
[CrossRef]

Rev. Sci. Instrum.

F. A. LaPlant, D. Ben-Amotz, “Design and construction of a microscope-based Raman system,” Rev. Sci. Instrum. 66, 3537–3544 (1995).
[CrossRef]

Spectrochim. Acta Part A

R. P. Rava, J. J. Baraga, M. S. Feld, “Near infrared Fourier transform Raman spectroscopy of human artery,” Spectrochim. Acta Part A 47, 509–512 (1991).
[CrossRef]

Other

C. H. Liu, W. L. S. Glassman, R. R. Alfano, H. R. Zhu, D. L. Akins, L. I. Decelbaum, M. L. Stetz, K. O’Brien, J. Scott, “Near-IR Raman spectroscopy of human aorta,” in Recent Advances in the Uses of Light in Physics, Chemistry, Engineering, and Medicine, R. R. Alfano, ed., Proc. SPIE1599, 77–80 (1991).
[CrossRef]

Y. Ozaki, A. Mizuno, “Raman and FT-IR studies of ocular tissues,” in Laser Applications in Life Sciences, S. A. Akhmanov, M. Y. Povoshina, eds., Proc. SPIE1403, 710–719 (1991).
[CrossRef]

C. A. Thompson, F. P. LaPlant, J. S. Reynolds, D. Ben-Amotz, K. J. Webb, “Detection of heterogeneities within a scattering medium using Raman spectroscopy,” in Optical Engineering Midwest ’95, R. P. Guzik, ed., Proc. SPIE2622, 400–404 (1995).

Y. Park, R. Dasari, M. Feld, “Time-resolved UV fluorescence spectroscopy of aorta using 320 nm excitation,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 499–504 (1990).
[CrossRef]

G. C. Guilbault, Practical Fluorescence (Marcel Dekker, New York, 1990), pp. 5–21.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), pp. 457–459.

J. C. Adams, Multigrid Software for Elliptic Partial Differential Equations (National Center for Atmospheric Research, Boulder, Colo., 1991).

B. Chance, M. Maris, J. Sorge, M. Zhang, “A phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues,” in Time-Resolved Laser Spectroscopy in Biochemistry II, J. R. Lakowicz, ed., Proc. SPIE1204, 481–491 (1990).
[CrossRef]

B. W. Pogue, M. S. Patterson, “Forward and inverse calculations for near-infrared imaging using multigrid finite difference method,” in Digest of Symposium on Photon Migration (Optical Society of America, Washington, D.C., 1994), pp. 176–180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Simulation geometry for modeling AlSPC fluorophore distributed in an Intralipid scattering medium. The source position and detector scan positions are indicated.

Fig. 2
Fig. 2

Gray scale plot of the log magnitude of the 633-nm excitation fluence for a 0.5 µg/mL AlSPC fluorophore in a 1%-by-volume Intralipid scattering medium. White indicates a higher fluence.

Fig. 3
Fig. 3

Gray scale plot of the log magnitude of the 680-nm emission fluence for a 0.5 µg/mL AlSPC fluorophore in a 1%-by-volume Intralipid scattering medium. White indicates a higher fluence.

Fig. 4
Fig. 4

Plot of the 633-nm excitation fluence along the surface of the phantom, simulating a scanned detector for a 0.5 µg/mL AlSPC fluorophore in 1% Intralipid scattering media. The modulation frequencies are 140 and 60 MHz: (a) modulation magnitude and (b) phase.

Fig. 5
Fig. 5

Plot of the 680-nm emission fluence along the surface of the phantom, simulating a scanned detector for a 0.5 µg/mL AlSPC fluorophore in 1% Intralipid scattering media. The modulation frequencies are 140 and 60 MHz: (a) modulation magnitude and (b) phase.

Fig. 6
Fig. 6

Microscope-based apparatus for measuring Raman spectrum from a scattering medium with reradiating heterogeneities. Radial information is obtained by scanning the test medium radially under the microscope objective.

Fig. 7
Fig. 7

Raman signal counts for diamond versus radial position, comparing experiment with three-dimensional finite difference simulations. The diamond is at a depth of 5.0 mm in 0.25% Intralipid.

Fig. 8
Fig. 8

Raman signal counts for diamond versus radial position, comparing experiment with three-dimensional finite difference simulations. The diamond is at a depth of 7.5 mm in 0.25% Intralipid.

Fig. 9
Fig. 9

Gray scale plot of the log magnitude of the 514-nm excitation fluence for a 0.25%-by-volume Intralipid scattering medium with two diamond chips separated by 9 mm. White indicates a higher fluence. Note that the heterogeneities caused by the diamonds are not visible.

Fig. 10
Fig. 10

Gray scale plot of the log magnitude of the Raman-shifted emission fluence for a 0.25%-by-volume Intralipid scattering medium with two diamond chips separated by 9 mm. White indicates a higher fluence. Note that the heterogeneities caused by the diamonds are now clearly visible.

Fig. 11
Fig. 11

Experimental Raman counts compared with simulations for a radial scan of two diamond chips separated by 9.0 mm at a 5.0-mm depth in 0.25% Intralipid.

Fig. 12
Fig. 12

Experimental Raman counts compared with simulations for a radial scan of two diamond chips separated by 3.8 mm at a 5.0-mm depth in 0.25% Intralipid.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

-·DrΦr, ω+iω/vΦr, ω+μarΦr, ω=Sr, ω,
Dr=13μar+μsr1-gr,
Jr, ω=-DrΦr, ω.
-·DxrΦxr, ω+iω/vxΦxr, ω+μaxrΦxr, ω=Sxr, ω.
Smr, ω=Φxr, ωμaxrrqxmrQω,
qxmr=photons emitted at λmphotons absorbed by reradiating absorber at λx,
Qω=1-iωτ1+ωτ2.
-·DmrΦmr, ω+iω/vmΦmr, ω+μamrΦmr, ω=Smr, ω.

Metrics