Abstract

Arrays of submillimeter microlenses are made from droplets of UV-curable optical adhesive dispensed from a pressurized syringe under computer control. Measurements of the focal length uniformity, the minimum focused spot size, and the spherical aberration are presented. An excellent lens diameter and focal length uniformity are achieved over 100 element arrays.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. John, T. S. M. MacLean, H. Ghafouri-Shiraz, J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 µm wavelength,” IEE Proc. Optoelectron. 141, 178–184 (1994).
    [CrossRef]
  2. S. Kawai, “Free-space multistage optical interconnection networks using microlens arrays,” J. Lightwave Technol. 9, 1774–1779 (1991).
    [CrossRef]
  3. B. P. Keyworth, D. J. Corazza, R. I. MacDonald, “Beam extractor card for free-space optical backplanes,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 109–113 (1996).
    [CrossRef]
  4. R. Nagarajan, J. N. McMullin, B. P. Keyworth, R. I. MacDonald, “3 × 3 optoelectronic switch using diffractive optics,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.
  5. D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).
  6. E. M. Strzelecka, G. D. Robinson, M. G. Peters, F. H. Peters, L. A. Coldren, “Monolithic integration of vertical-cavity laser diodes with refractive GaAs microlenses,” Electron. Lett. 31, 724–725 (1995).
    [CrossRef]
  7. S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer ablation of amorphous Teflon,” Appl. Opt. 32, 6211–6218 (1993).
    [CrossRef] [PubMed]
  8. R. Grunwald, U. Griebner, R. Ehlert, “Microlens arrays for segmented laser architectures,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 324–333 (1995).
    [CrossRef]
  9. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon Technol. Lett. 6, 1112–1114 (1994).
    [CrossRef]
  10. B. P. Keyworth, J. N. McMullin, D. Corazza, L. Mabbott, T. Neufeld, T. Rosadiuk, “Dispensed polymer microlenses,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.
  11. B. P. Keyworth, R. Narendra, J. N. McMullin, R. I. MacDonald, “Direct dispensing of polymer waveguides on silicon substrates,” in Proceedings of the LEOS 1993 Summer Topical Meeting Digest on Optical Microwave Interactions, Santa Barbara, Calif., July 1993 (Lasers and Electro-Optics Society, New York, 1993), pp. 41–42.
  12. B. P. Keyworth, J. N. McMullin, R. Narendra, R. I. MacDonald, “Computer-controlled pressure-dispensed multimode polymer waveguides,” IEEE Trans. Components Packaging Manuf. 18, 572–577 (1995).
  13. B. P. Keyworth, J. N. McMullin, “Method and apparatus for making optical components by direct dispensing of curable liquid,” U.S. patent5,534,101 (9July1996).
  14. M. C. Hutley, D. Daly, R. F. Stevens, “The testing of microlens arrays,” in Microlens Arrays, M. C. Hutley, ed. (Institute of Physics, Bristol, UK, 1991), Vol. 30, pp. 67–81.

1995 (2)

E. M. Strzelecka, G. D. Robinson, M. G. Peters, F. H. Peters, L. A. Coldren, “Monolithic integration of vertical-cavity laser diodes with refractive GaAs microlenses,” Electron. Lett. 31, 724–725 (1995).
[CrossRef]

B. P. Keyworth, J. N. McMullin, R. Narendra, R. I. MacDonald, “Computer-controlled pressure-dispensed multimode polymer waveguides,” IEEE Trans. Components Packaging Manuf. 18, 572–577 (1995).

1994 (2)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

J. John, T. S. M. MacLean, H. Ghafouri-Shiraz, J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 µm wavelength,” IEE Proc. Optoelectron. 141, 178–184 (1994).
[CrossRef]

1993 (1)

1991 (1)

S. Kawai, “Free-space multistage optical interconnection networks using microlens arrays,” J. Lightwave Technol. 9, 1774–1779 (1991).
[CrossRef]

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

Chen, T.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Coldren, L. A.

E. M. Strzelecka, G. D. Robinson, M. G. Peters, F. H. Peters, L. A. Coldren, “Monolithic integration of vertical-cavity laser diodes with refractive GaAs microlenses,” Electron. Lett. 31, 724–725 (1995).
[CrossRef]

Corazza, D.

B. P. Keyworth, J. N. McMullin, D. Corazza, L. Mabbott, T. Neufeld, T. Rosadiuk, “Dispensed polymer microlenses,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

Corazza, D. J.

B. P. Keyworth, D. J. Corazza, R. I. MacDonald, “Beam extractor card for free-space optical backplanes,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 109–113 (1996).
[CrossRef]

Cox, W. R.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

M. C. Hutley, D. Daly, R. F. Stevens, “The testing of microlens arrays,” in Microlens Arrays, M. C. Hutley, ed. (Institute of Physics, Bristol, UK, 1991), Vol. 30, pp. 67–81.

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

Ehlert, R.

R. Grunwald, U. Griebner, R. Ehlert, “Microlens arrays for segmented laser architectures,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 324–333 (1995).
[CrossRef]

Ghafouri-Shiraz, H.

J. John, T. S. M. MacLean, H. Ghafouri-Shiraz, J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 µm wavelength,” IEE Proc. Optoelectron. 141, 178–184 (1994).
[CrossRef]

Griebner, U.

R. Grunwald, U. Griebner, R. Ehlert, “Microlens arrays for segmented laser architectures,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 324–333 (1995).
[CrossRef]

Grunwald, R.

R. Grunwald, U. Griebner, R. Ehlert, “Microlens arrays for segmented laser architectures,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 324–333 (1995).
[CrossRef]

Hayes, D. J.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

M. C. Hutley, D. Daly, R. F. Stevens, “The testing of microlens arrays,” in Microlens Arrays, M. C. Hutley, ed. (Institute of Physics, Bristol, UK, 1991), Vol. 30, pp. 67–81.

John, J.

J. John, T. S. M. MacLean, H. Ghafouri-Shiraz, J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 µm wavelength,” IEE Proc. Optoelectron. 141, 178–184 (1994).
[CrossRef]

Kawai, S.

S. Kawai, “Free-space multistage optical interconnection networks using microlens arrays,” J. Lightwave Technol. 9, 1774–1779 (1991).
[CrossRef]

Keyworth, B. P.

B. P. Keyworth, J. N. McMullin, R. Narendra, R. I. MacDonald, “Computer-controlled pressure-dispensed multimode polymer waveguides,” IEEE Trans. Components Packaging Manuf. 18, 572–577 (1995).

B. P. Keyworth, J. N. McMullin, “Method and apparatus for making optical components by direct dispensing of curable liquid,” U.S. patent5,534,101 (9July1996).

B. P. Keyworth, R. Narendra, J. N. McMullin, R. I. MacDonald, “Direct dispensing of polymer waveguides on silicon substrates,” in Proceedings of the LEOS 1993 Summer Topical Meeting Digest on Optical Microwave Interactions, Santa Barbara, Calif., July 1993 (Lasers and Electro-Optics Society, New York, 1993), pp. 41–42.

B. P. Keyworth, D. J. Corazza, R. I. MacDonald, “Beam extractor card for free-space optical backplanes,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 109–113 (1996).
[CrossRef]

R. Nagarajan, J. N. McMullin, B. P. Keyworth, R. I. MacDonald, “3 × 3 optoelectronic switch using diffractive optics,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

B. P. Keyworth, J. N. McMullin, D. Corazza, L. Mabbott, T. Neufeld, T. Rosadiuk, “Dispensed polymer microlenses,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

Lazare, S.

Mabbott, L.

B. P. Keyworth, J. N. McMullin, D. Corazza, L. Mabbott, T. Neufeld, T. Rosadiuk, “Dispensed polymer microlenses,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

MacDonald, R. I.

B. P. Keyworth, J. N. McMullin, R. Narendra, R. I. MacDonald, “Computer-controlled pressure-dispensed multimode polymer waveguides,” IEEE Trans. Components Packaging Manuf. 18, 572–577 (1995).

B. P. Keyworth, R. Narendra, J. N. McMullin, R. I. MacDonald, “Direct dispensing of polymer waveguides on silicon substrates,” in Proceedings of the LEOS 1993 Summer Topical Meeting Digest on Optical Microwave Interactions, Santa Barbara, Calif., July 1993 (Lasers and Electro-Optics Society, New York, 1993), pp. 41–42.

R. Nagarajan, J. N. McMullin, B. P. Keyworth, R. I. MacDonald, “3 × 3 optoelectronic switch using diffractive optics,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

B. P. Keyworth, D. J. Corazza, R. I. MacDonald, “Beam extractor card for free-space optical backplanes,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 109–113 (1996).
[CrossRef]

MacFarlane, D. L.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

MacLean, T. S. M.

J. John, T. S. M. MacLean, H. Ghafouri-Shiraz, J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 µm wavelength,” IEE Proc. Optoelectron. 141, 178–184 (1994).
[CrossRef]

McMullin, J. N.

B. P. Keyworth, J. N. McMullin, R. Narendra, R. I. MacDonald, “Computer-controlled pressure-dispensed multimode polymer waveguides,” IEEE Trans. Components Packaging Manuf. 18, 572–577 (1995).

B. P. Keyworth, J. N. McMullin, “Method and apparatus for making optical components by direct dispensing of curable liquid,” U.S. patent5,534,101 (9July1996).

B. P. Keyworth, R. Narendra, J. N. McMullin, R. I. MacDonald, “Direct dispensing of polymer waveguides on silicon substrates,” in Proceedings of the LEOS 1993 Summer Topical Meeting Digest on Optical Microwave Interactions, Santa Barbara, Calif., July 1993 (Lasers and Electro-Optics Society, New York, 1993), pp. 41–42.

R. Nagarajan, J. N. McMullin, B. P. Keyworth, R. I. MacDonald, “3 × 3 optoelectronic switch using diffractive optics,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

B. P. Keyworth, J. N. McMullin, D. Corazza, L. Mabbott, T. Neufeld, T. Rosadiuk, “Dispensed polymer microlenses,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

Mihailov, S.

Nagarajan, R.

R. Nagarajan, J. N. McMullin, B. P. Keyworth, R. I. MacDonald, “3 × 3 optoelectronic switch using diffractive optics,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Narendra, R.

B. P. Keyworth, J. N. McMullin, R. Narendra, R. I. MacDonald, “Computer-controlled pressure-dispensed multimode polymer waveguides,” IEEE Trans. Components Packaging Manuf. 18, 572–577 (1995).

B. P. Keyworth, R. Narendra, J. N. McMullin, R. I. MacDonald, “Direct dispensing of polymer waveguides on silicon substrates,” in Proceedings of the LEOS 1993 Summer Topical Meeting Digest on Optical Microwave Interactions, Santa Barbara, Calif., July 1993 (Lasers and Electro-Optics Society, New York, 1993), pp. 41–42.

Neufeld, T.

B. P. Keyworth, J. N. McMullin, D. Corazza, L. Mabbott, T. Neufeld, T. Rosadiuk, “Dispensed polymer microlenses,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

Niblett, J.

J. John, T. S. M. MacLean, H. Ghafouri-Shiraz, J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 µm wavelength,” IEE Proc. Optoelectron. 141, 178–184 (1994).
[CrossRef]

Peters, F. H.

E. M. Strzelecka, G. D. Robinson, M. G. Peters, F. H. Peters, L. A. Coldren, “Monolithic integration of vertical-cavity laser diodes with refractive GaAs microlenses,” Electron. Lett. 31, 724–725 (1995).
[CrossRef]

Peters, M. G.

E. M. Strzelecka, G. D. Robinson, M. G. Peters, F. H. Peters, L. A. Coldren, “Monolithic integration of vertical-cavity laser diodes with refractive GaAs microlenses,” Electron. Lett. 31, 724–725 (1995).
[CrossRef]

Robinson, G. D.

E. M. Strzelecka, G. D. Robinson, M. G. Peters, F. H. Peters, L. A. Coldren, “Monolithic integration of vertical-cavity laser diodes with refractive GaAs microlenses,” Electron. Lett. 31, 724–725 (1995).
[CrossRef]

Rosadiuk, T.

B. P. Keyworth, J. N. McMullin, D. Corazza, L. Mabbott, T. Neufeld, T. Rosadiuk, “Dispensed polymer microlenses,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

M. C. Hutley, D. Daly, R. F. Stevens, “The testing of microlens arrays,” in Microlens Arrays, M. C. Hutley, ed. (Institute of Physics, Bristol, UK, 1991), Vol. 30, pp. 67–81.

Strzelecka, E. M.

E. M. Strzelecka, G. D. Robinson, M. G. Peters, F. H. Peters, L. A. Coldren, “Monolithic integration of vertical-cavity laser diodes with refractive GaAs microlenses,” Electron. Lett. 31, 724–725 (1995).
[CrossRef]

Tatum, J. A.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

E. M. Strzelecka, G. D. Robinson, M. G. Peters, F. H. Peters, L. A. Coldren, “Monolithic integration of vertical-cavity laser diodes with refractive GaAs microlenses,” Electron. Lett. 31, 724–725 (1995).
[CrossRef]

IEE Proc. Optoelectron. (1)

J. John, T. S. M. MacLean, H. Ghafouri-Shiraz, J. Niblett, “Matching of single-mode fibre to laser diode by microlenses at 1.5 µm wavelength,” IEE Proc. Optoelectron. 141, 178–184 (1994).
[CrossRef]

IEEE Photon Technol. Lett. (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

IEEE Trans. Components Packaging Manuf. (1)

B. P. Keyworth, J. N. McMullin, R. Narendra, R. I. MacDonald, “Computer-controlled pressure-dispensed multimode polymer waveguides,” IEEE Trans. Components Packaging Manuf. 18, 572–577 (1995).

J. Lightwave Technol. (1)

S. Kawai, “Free-space multistage optical interconnection networks using microlens arrays,” J. Lightwave Technol. 9, 1774–1779 (1991).
[CrossRef]

J. Phys. E (1)

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

Other (7)

R. Grunwald, U. Griebner, R. Ehlert, “Microlens arrays for segmented laser architectures,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 324–333 (1995).
[CrossRef]

B. P. Keyworth, D. J. Corazza, R. I. MacDonald, “Beam extractor card for free-space optical backplanes,” in Optical Interconnects in Broadband Switching Architectures, T. J. Cloonan, ed., Proc. SPIE2692, 109–113 (1996).
[CrossRef]

R. Nagarajan, J. N. McMullin, B. P. Keyworth, R. I. MacDonald, “3 × 3 optoelectronic switch using diffractive optics,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

B. P. Keyworth, J. N. McMullin, “Method and apparatus for making optical components by direct dispensing of curable liquid,” U.S. patent5,534,101 (9July1996).

M. C. Hutley, D. Daly, R. F. Stevens, “The testing of microlens arrays,” in Microlens Arrays, M. C. Hutley, ed. (Institute of Physics, Bristol, UK, 1991), Vol. 30, pp. 67–81.

B. P. Keyworth, J. N. McMullin, D. Corazza, L. Mabbott, T. Neufeld, T. Rosadiuk, “Dispensed polymer microlenses,” presented at the Annual Meeting of the Optical Society of America, Portland, Ore., 10–15 September 1995.

B. P. Keyworth, R. Narendra, J. N. McMullin, R. I. MacDonald, “Direct dispensing of polymer waveguides on silicon substrates,” in Proceedings of the LEOS 1993 Summer Topical Meeting Digest on Optical Microwave Interactions, Santa Barbara, Calif., July 1993 (Lasers and Electro-Optics Society, New York, 1993), pp. 41–42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SEM’s of a microlens array on a 500-µm pitch.

Fig. 2
Fig. 2

Apparatus for measuring the microlens focal length.

Fig. 3
Fig. 3

Focal length histograms for 10 × 10 microlens arrays: (a) 215-µm-diameter lenses on a 250 µm pitch, (b) 430-µm-diameter lenses on a 500-µm pitch.

Fig. 4
Fig. 4

F-number versus lens diameter for NOA 63, NOA 65, and NOA 68. Solid lines show the least-squares fit for each set of data.

Fig. 5
Fig. 5

(a) Ray tracing simulation (convex surface toward the collimated beam). (b) Predicted transverse spherical aberration (TSA) at the paraxial focal plane and minimum spot size.

Fig. 6
Fig. 6

Measured focused spot size versus lens diameter (plane-wave illumination; convex surface toward the collimated beam).

Fig. 7
Fig. 7

Microlens interferograms: (a) f/2.8, 230-µm diameter, 0.6 waves of spherical aberration; (b) f/17, 230-µm diameter, negligible spherical aberration.

Fig. 8
Fig. 8

(a) Conceptual diagram of a packaged VCSEL array with polymer microlenses. (b) Collimated output beams on a 250-µm pitch, 1 cm from the VCSEL array.

Metrics