Abstract

Scanning near-field optical microscopes (SNOM’s) actually lead to nanometric lateral resolution. A combination with shear-force feedback is sometimes used to keep the SNOM tip at a constant force from the sample. However, resolutions in shear-force and optical data are different. An estimation of both resolutions is important for characterizing the capabilities of such systems. The basic principle of the measurement is to compare a spline-fitted logarithm of the power spectra calculated with the optical image with that of the shear force image in which resolution is determined a priori. Quantitative results are given in the case of periodic or untested sample and simulated data. Moreover the accuracy and the stability of the method are discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Appl. Phys. A 59, 89–101 (1994).
    [Crossref]
  2. M. Spajer, D. Courjon, K. Sarayedine, A. Jalocha, J. M. Vigoureux, “Microscopie en champ proche par réflexion,” Rev. Phys. Appl. 26, 111–112 (1989).
  3. D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near-field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
    [Crossref] [PubMed]
  4. O. Bergossi, M. Spajer, “A scanning local probe interferometer and reflectometer: application to very low relief objects,” in Interferometric Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 238–248 (1994).
  5. O. Bergossi, M. Spajer, P. Schiavone, “Visualization of latent images by reflection near field optical microscopy,” Ultramicroscopy 61, 241–246 (1995).
    [Crossref]
  6. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [Crossref]
  7. R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
    [Crossref]
  8. J. W. Goodman, Introduction à l’optique de Fourier et à l’holographie (Masson, Paris, 1972).
  9. C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
    [Crossref]
  10. S. K. Park, R. Schowengerdt, M. A. Kaczynski, “Modulation-transfer-function analysis for sampled image systems,” Appl. Opt. 23, 2572–2582 (1984).
    [Crossref]
  11. D. Courjon, “Near-field imaging: some attempts to define an apparatus function,” J. Microsc. 177, 180–185 (1995).
    [Crossref]
  12. G. Reiss, F. Schneider, J. Vancea, H. Hoffman, “Scanning tunneling microscopy on rough surfaces: Deconvolution of contrast current images,” Appl. Phys. Lett. 57, 867–869 (1990).
    [Crossref]
  13. R. Carminati, J.-J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function,” Opt. Commun. 116, 316–321 (1995); erratum 120, 371 (1995).
  14. J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. B. Judkins, “Linear behavior of near-field optical system,” J. Opt. Soc. Am. 12, 1677–1682 (1995).
    [Crossref]
  15. T. Nakano, S. Kawata, “Numerical analysis of the near-field diffraction pattern of a small aperture,” J. Mod. Opt. 39, 645–661 (1992).
    [Crossref]
  16. J. M. Vigoureux, D. Courjon, “Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion,” Appl. Opt. 31, 3170–3177 (1992).
    [Crossref] [PubMed]
  17. J. M. Vigoureux, F. Depasse, Ch. Girard, “Superresolution of near-field optical microscopy defined from properties of confined electromagnetic waves,” Appl. Opt. 31, 3036–3045 (1992).
    [Crossref] [PubMed]
  18. K. Cho, Y. Ohfuti, K. Arima, “Study of scanning near-field optical microscopy (SNOM) by nonlocal response theory,” Jpn. J. Appl. Phys. 34, 267–270 (1994).
  19. N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
    [Crossref]
  20. C. Pieralli, “Statistical estimation of point spread function applied to scanning near-field optical microscopy,” Opt. Commun. 108, 203–208 (1994).
    [Crossref]
  21. R. U. Masheri, H. Y. Tatsumi, Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurons with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
    [Crossref]
  22. D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory,” J. Mod. Opt. 40, 1239–1254 (1993).
    [Crossref]
  23. D. Barchiesi, D. Van Labeke, “A perturbative diffraction theory of a multilayer system: applications to near-field optical microscopy SNOM and STOM,” Ultramicroscopy 57, 196–203 (1995).
    [Crossref]
  24. D. Barchiesi, “A 3-D method for calculating near-field diffracted by nanostructures: application to thin-coated nanosources,” Opt. Commun. 126, 7–13 (1996).
    [Crossref]
  25. Ch. Girard, X. Bouju, “Self-consistent study of dynamical and polarization effects in near field optical microscopy,” J. Opt. Soc. Am. B 9, 298–305 (1992).
    [Crossref]
  26. D. Barchiesi, D. Van Labeke, “Scanning tunneling optical microscopy (stom): theoretical study of polarization effects with two models of tip,” in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Norwell, Mass., 1993), pp. 179–188.
    [Crossref]
  27. N. Garcia, M. Nieto-Vesperinas, “Near-field optics inverse-scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993).
    [Crossref]
  28. M. Vaez-Iravani, R. Toledo-Crow, “Amplitude, phase contrast, and polarization imaging in near field scanning optical microscopy,” in Near Field Optics, Series E: Applied Sciences, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Norwell, Mass., 1993), pp. 25–34.
    [Crossref]
  29. L. Novotny, D. W. Pohl, “Light propagation in scanning near-field optical microscopy,” in Photons and Local Probes, Othmar Marti, Rolf Möller, eds., Vol. 300 of Series E: Applied Sciences (Kluwer Academic, Norwell, Mass., 1995), pp. 21–34.
  30. R. H. T. Bates, B. K. Queck, C. R. Parker, “Some implications of zero sheets for blind deconvolution and phase retrieval,” J. Opt. Soc. Am. A 7, 468–479 (1990).
    [Crossref]
  31. C. H. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177–183 (1967).
    [Crossref]
  32. S. I. Bozhevolnyi, I. I. Smolyaninov, O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear-force feedback,” Appl. Opt. 34, 3793–3799 (1995).
    [Crossref] [PubMed]

1996 (1)

D. Barchiesi, “A 3-D method for calculating near-field diffracted by nanostructures: application to thin-coated nanosources,” Opt. Commun. 126, 7–13 (1996).
[Crossref]

1995 (8)

D. Courjon, “Near-field imaging: some attempts to define an apparatus function,” J. Microsc. 177, 180–185 (1995).
[Crossref]

R. Carminati, J.-J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function,” Opt. Commun. 116, 316–321 (1995); erratum 120, 371 (1995).

J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. B. Judkins, “Linear behavior of near-field optical system,” J. Opt. Soc. Am. 12, 1677–1682 (1995).
[Crossref]

N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
[Crossref]

R. U. Masheri, H. Y. Tatsumi, Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurons with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

O. Bergossi, M. Spajer, P. Schiavone, “Visualization of latent images by reflection near field optical microscopy,” Ultramicroscopy 61, 241–246 (1995).
[Crossref]

D. Barchiesi, D. Van Labeke, “A perturbative diffraction theory of a multilayer system: applications to near-field optical microscopy SNOM and STOM,” Ultramicroscopy 57, 196–203 (1995).
[Crossref]

S. I. Bozhevolnyi, I. I. Smolyaninov, O. Keller, “Correlation between optical and topographical images from an external reflection near-field microscope with shear-force feedback,” Appl. Opt. 34, 3793–3799 (1995).
[Crossref] [PubMed]

1994 (3)

H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Appl. Phys. A 59, 89–101 (1994).
[Crossref]

K. Cho, Y. Ohfuti, K. Arima, “Study of scanning near-field optical microscopy (SNOM) by nonlocal response theory,” Jpn. J. Appl. Phys. 34, 267–270 (1994).

C. Pieralli, “Statistical estimation of point spread function applied to scanning near-field optical microscopy,” Opt. Commun. 108, 203–208 (1994).
[Crossref]

1993 (2)

D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory,” J. Mod. Opt. 40, 1239–1254 (1993).
[Crossref]

N. Garcia, M. Nieto-Vesperinas, “Near-field optics inverse-scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993).
[Crossref]

1992 (6)

Ch. Girard, X. Bouju, “Self-consistent study of dynamical and polarization effects in near field optical microscopy,” J. Opt. Soc. Am. B 9, 298–305 (1992).
[Crossref]

J. M. Vigoureux, F. Depasse, Ch. Girard, “Superresolution of near-field optical microscopy defined from properties of confined electromagnetic waves,” Appl. Opt. 31, 3036–3045 (1992).
[Crossref] [PubMed]

J. M. Vigoureux, D. Courjon, “Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion,” Appl. Opt. 31, 3170–3177 (1992).
[Crossref] [PubMed]

T. Nakano, S. Kawata, “Numerical analysis of the near-field diffraction pattern of a small aperture,” J. Mod. Opt. 39, 645–661 (1992).
[Crossref]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

1991 (1)

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[Crossref]

1990 (3)

D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near-field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[Crossref] [PubMed]

G. Reiss, F. Schneider, J. Vancea, H. Hoffman, “Scanning tunneling microscopy on rough surfaces: Deconvolution of contrast current images,” Appl. Phys. Lett. 57, 867–869 (1990).
[Crossref]

R. H. T. Bates, B. K. Queck, C. R. Parker, “Some implications of zero sheets for blind deconvolution and phase retrieval,” J. Opt. Soc. Am. A 7, 468–479 (1990).
[Crossref]

1989 (1)

M. Spajer, D. Courjon, K. Sarayedine, A. Jalocha, J. M. Vigoureux, “Microscopie en champ proche par réflexion,” Rev. Phys. Appl. 26, 111–112 (1989).

1984 (1)

1967 (1)

C. H. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177–183 (1967).
[Crossref]

Arima, K.

K. Cho, Y. Ohfuti, K. Arima, “Study of scanning near-field optical microscopy (SNOM) by nonlocal response theory,” Jpn. J. Appl. Phys. 34, 267–270 (1994).

Barchiesi, D.

D. Barchiesi, “A 3-D method for calculating near-field diffracted by nanostructures: application to thin-coated nanosources,” Opt. Commun. 126, 7–13 (1996).
[Crossref]

D. Barchiesi, D. Van Labeke, “A perturbative diffraction theory of a multilayer system: applications to near-field optical microscopy SNOM and STOM,” Ultramicroscopy 57, 196–203 (1995).
[Crossref]

D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory,” J. Mod. Opt. 40, 1239–1254 (1993).
[Crossref]

D. Barchiesi, D. Van Labeke, “Scanning tunneling optical microscopy (stom): theoretical study of polarization effects with two models of tip,” in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Norwell, Mass., 1993), pp. 179–188.
[Crossref]

Bates, R. H. T.

R. H. T. Bates, B. K. Queck, C. R. Parker, “Some implications of zero sheets for blind deconvolution and phase retrieval,” J. Opt. Soc. Am. A 7, 468–479 (1990).
[Crossref]

Bergossi, O.

O. Bergossi, M. Spajer, P. Schiavone, “Visualization of latent images by reflection near field optical microscopy,” Ultramicroscopy 61, 241–246 (1995).
[Crossref]

O. Bergossi, M. Spajer, “A scanning local probe interferometer and reflectometer: application to very low relief objects,” in Interferometric Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 238–248 (1994).

Betzig, E.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

Bouju, X.

Bozhevolnyi, S. I.

Carminati, R.

R. Carminati, J.-J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function,” Opt. Commun. 116, 316–321 (1995); erratum 120, 371 (1995).

Chen, Y.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

Cho, K.

K. Cho, Y. Ohfuti, K. Arima, “Study of scanning near-field optical microscopy (SNOM) by nonlocal response theory,” Jpn. J. Appl. Phys. 34, 267–270 (1994).

Courjon, D.

D. Courjon, “Near-field imaging: some attempts to define an apparatus function,” J. Microsc. 177, 180–185 (1995).
[Crossref]

J. M. Vigoureux, D. Courjon, “Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion,” Appl. Opt. 31, 3170–3177 (1992).
[Crossref] [PubMed]

D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near-field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[Crossref] [PubMed]

M. Spajer, D. Courjon, K. Sarayedine, A. Jalocha, J. M. Vigoureux, “Microscopie en champ proche par réflexion,” Rev. Phys. Appl. 26, 111–112 (1989).

Depasse, F.

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

Froehlich, F. F.

J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. B. Judkins, “Linear behavior of near-field optical system,” J. Opt. Soc. Am. 12, 1677–1682 (1995).
[Crossref]

Garcia, N.

N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
[Crossref]

N. Garcia, M. Nieto-Vesperinas, “Near-field optics inverse-scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993).
[Crossref]

Girard, Ch.

Goodman, J. W.

J. W. Goodman, Introduction à l’optique de Fourier et à l’holographie (Masson, Paris, 1972).

Greffet, J.-J.

R. Carminati, J.-J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function,” Opt. Commun. 116, 316–321 (1995); erratum 120, 371 (1995).

Gu, M.

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[Crossref]

Heinzelmann, H.

H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Appl. Phys. A 59, 89–101 (1994).
[Crossref]

Hoffman, H.

G. Reiss, F. Schneider, J. Vancea, H. Hoffman, “Scanning tunneling microscopy on rough surfaces: Deconvolution of contrast current images,” Appl. Phys. Lett. 57, 867–869 (1990).
[Crossref]

Jalocha, A.

M. Spajer, D. Courjon, K. Sarayedine, A. Jalocha, J. M. Vigoureux, “Microscopie en champ proche par réflexion,” Rev. Phys. Appl. 26, 111–112 (1989).

Judkins, J. B.

J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. B. Judkins, “Linear behavior of near-field optical system,” J. Opt. Soc. Am. 12, 1677–1682 (1995).
[Crossref]

Kaczynski, M. A.

Kann, J. L.

J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. B. Judkins, “Linear behavior of near-field optical system,” J. Opt. Soc. Am. 12, 1677–1682 (1995).
[Crossref]

Katayama,

R. U. Masheri, H. Y. Tatsumi, Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurons with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

Kawata, S.

T. Nakano, S. Kawata, “Numerical analysis of the near-field diffraction pattern of a small aperture,” J. Mod. Opt. 39, 645–661 (1992).
[Crossref]

Keller, O.

Leblanc, S.

D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near-field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[Crossref] [PubMed]

Mao, X. Q.

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[Crossref]

Masheri, R. U.

R. U. Masheri, H. Y. Tatsumi, Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurons with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

Milster, T. D.

J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. B. Judkins, “Linear behavior of near-field optical system,” J. Opt. Soc. Am. 12, 1677–1682 (1995).
[Crossref]

Nakano, T.

T. Nakano, S. Kawata, “Numerical analysis of the near-field diffraction pattern of a small aperture,” J. Mod. Opt. 39, 645–661 (1992).
[Crossref]

Nieto-Vesperinas, M.

N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
[Crossref]

N. Garcia, M. Nieto-Vesperinas, “Near-field optics inverse-scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993).
[Crossref]

Novotny, L.

L. Novotny, D. W. Pohl, “Light propagation in scanning near-field optical microscopy,” in Photons and Local Probes, Othmar Marti, Rolf Möller, eds., Vol. 300 of Series E: Applied Sciences (Kluwer Academic, Norwell, Mass., 1995), pp. 21–34.

Ohfuti, Y.

K. Cho, Y. Ohfuti, K. Arima, “Study of scanning near-field optical microscopy (SNOM) by nonlocal response theory,” Jpn. J. Appl. Phys. 34, 267–270 (1994).

Ohtsu, M.

R. U. Masheri, H. Y. Tatsumi, Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurons with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

Park, S. K.

Parker, C. R.

R. H. T. Bates, B. K. Queck, C. R. Parker, “Some implications of zero sheets for blind deconvolution and phase retrieval,” J. Opt. Soc. Am. A 7, 468–479 (1990).
[Crossref]

Pieralli, C.

C. Pieralli, “Statistical estimation of point spread function applied to scanning near-field optical microscopy,” Opt. Commun. 108, 203–208 (1994).
[Crossref]

Pohl, D. W.

H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Appl. Phys. A 59, 89–101 (1994).
[Crossref]

L. Novotny, D. W. Pohl, “Light propagation in scanning near-field optical microscopy,” in Photons and Local Probes, Othmar Marti, Rolf Möller, eds., Vol. 300 of Series E: Applied Sciences (Kluwer Academic, Norwell, Mass., 1995), pp. 21–34.

Queck, B. K.

R. H. T. Bates, B. K. Queck, C. R. Parker, “Some implications of zero sheets for blind deconvolution and phase retrieval,” J. Opt. Soc. Am. A 7, 468–479 (1990).
[Crossref]

Reinsch, C. H.

C. H. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177–183 (1967).
[Crossref]

Reiss, G.

G. Reiss, F. Schneider, J. Vancea, H. Hoffman, “Scanning tunneling microscopy on rough surfaces: Deconvolution of contrast current images,” Appl. Phys. Lett. 57, 867–869 (1990).
[Crossref]

Sarayeddine, K.

D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near-field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[Crossref] [PubMed]

Sarayedine, K.

M. Spajer, D. Courjon, K. Sarayedine, A. Jalocha, J. M. Vigoureux, “Microscopie en champ proche par réflexion,” Rev. Phys. Appl. 26, 111–112 (1989).

Schiavone, P.

O. Bergossi, M. Spajer, P. Schiavone, “Visualization of latent images by reflection near field optical microscopy,” Ultramicroscopy 61, 241–246 (1995).
[Crossref]

Schneider, F.

G. Reiss, F. Schneider, J. Vancea, H. Hoffman, “Scanning tunneling microscopy on rough surfaces: Deconvolution of contrast current images,” Appl. Phys. Lett. 57, 867–869 (1990).
[Crossref]

Schowengerdt, R.

Sheppard, C. J. R.

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[Crossref]

Smolyaninov, I. I.

Spajer, M.

O. Bergossi, M. Spajer, P. Schiavone, “Visualization of latent images by reflection near field optical microscopy,” Ultramicroscopy 61, 241–246 (1995).
[Crossref]

D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near-field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[Crossref] [PubMed]

M. Spajer, D. Courjon, K. Sarayedine, A. Jalocha, J. M. Vigoureux, “Microscopie en champ proche par réflexion,” Rev. Phys. Appl. 26, 111–112 (1989).

O. Bergossi, M. Spajer, “A scanning local probe interferometer and reflectometer: application to very low relief objects,” in Interferometric Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 238–248 (1994).

Tatsumi, H. Y.

R. U. Masheri, H. Y. Tatsumi, Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurons with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

Toledo-Crow, R.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

M. Vaez-Iravani, R. Toledo-Crow, “Amplitude, phase contrast, and polarization imaging in near field scanning optical microscopy,” in Near Field Optics, Series E: Applied Sciences, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Norwell, Mass., 1993), pp. 25–34.
[Crossref]

Vaez-Iravani, M.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

M. Vaez-Iravani, R. Toledo-Crow, “Amplitude, phase contrast, and polarization imaging in near field scanning optical microscopy,” in Near Field Optics, Series E: Applied Sciences, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Norwell, Mass., 1993), pp. 25–34.
[Crossref]

Van Labeke, D.

D. Barchiesi, D. Van Labeke, “A perturbative diffraction theory of a multilayer system: applications to near-field optical microscopy SNOM and STOM,” Ultramicroscopy 57, 196–203 (1995).
[Crossref]

D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory,” J. Mod. Opt. 40, 1239–1254 (1993).
[Crossref]

D. Barchiesi, D. Van Labeke, “Scanning tunneling optical microscopy (stom): theoretical study of polarization effects with two models of tip,” in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Norwell, Mass., 1993), pp. 179–188.
[Crossref]

Vancea, J.

G. Reiss, F. Schneider, J. Vancea, H. Hoffman, “Scanning tunneling microscopy on rough surfaces: Deconvolution of contrast current images,” Appl. Phys. Lett. 57, 867–869 (1990).
[Crossref]

Vigoureux, J. M.

J. M. Vigoureux, D. Courjon, “Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion,” Appl. Opt. 31, 3170–3177 (1992).
[Crossref] [PubMed]

J. M. Vigoureux, F. Depasse, Ch. Girard, “Superresolution of near-field optical microscopy defined from properties of confined electromagnetic waves,” Appl. Opt. 31, 3036–3045 (1992).
[Crossref] [PubMed]

D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near-field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[Crossref] [PubMed]

M. Spajer, D. Courjon, K. Sarayedine, A. Jalocha, J. M. Vigoureux, “Microscopie en champ proche par réflexion,” Rev. Phys. Appl. 26, 111–112 (1989).

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

Yang, P. C.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

Ziolkowski, R. W.

J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. B. Judkins, “Linear behavior of near-field optical system,” J. Opt. Soc. Am. 12, 1677–1682 (1995).
[Crossref]

Appl. Opt. (1)

D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, S. Leblanc, “External and internal reflection near-field microscopy: experiments and results,” Appl. Opt. 29, 3734–3740 (1990).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
[Crossref]

Appl. Phys. A (1)

H. Heinzelmann, D. W. Pohl, “Scanning near-field optical microscopy (SNOM),” Appl. Phys. A 59, 89–101 (1994).
[Crossref]

Appl. Phys. Lett. (2)

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[Crossref]

G. Reiss, F. Schneider, J. Vancea, H. Hoffman, “Scanning tunneling microscopy on rough surfaces: Deconvolution of contrast current images,” Appl. Phys. Lett. 57, 867–869 (1990).
[Crossref]

J. Microsc. (1)

D. Courjon, “Near-field imaging: some attempts to define an apparatus function,” J. Microsc. 177, 180–185 (1995).
[Crossref]

J. Mod. Opt. (1)

T. Nakano, S. Kawata, “Numerical analysis of the near-field diffraction pattern of a small aperture,” J. Mod. Opt. 39, 645–661 (1992).
[Crossref]

J. Mod. Opt. (1)

D. Barchiesi, D. Van Labeke, “Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory,” J. Mod. Opt. 40, 1239–1254 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

R. H. T. Bates, B. K. Queck, C. R. Parker, “Some implications of zero sheets for blind deconvolution and phase retrieval,” J. Opt. Soc. Am. A 7, 468–479 (1990).
[Crossref]

J. Opt. Soc. Am. (1)

J. L. Kann, T. D. Milster, F. F. Froehlich, R. W. Ziolkowski, J. B. Judkins, “Linear behavior of near-field optical system,” J. Opt. Soc. Am. 12, 1677–1682 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Cho, Y. Ohfuti, K. Arima, “Study of scanning near-field optical microscopy (SNOM) by nonlocal response theory,” Jpn. J. Appl. Phys. 34, 267–270 (1994).

Numer. Math. (1)

C. H. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177–183 (1967).
[Crossref]

Opt. Lett. (1)

N. Garcia, M. Nieto-Vesperinas, “Near-field optics inverse-scattering reconstruction of reflective surfaces,” Opt. Lett. 18, 2090–2092 (1993).
[Crossref]

Opt. Commun. (5)

D. Barchiesi, “A 3-D method for calculating near-field diffracted by nanostructures: application to thin-coated nanosources,” Opt. Commun. 126, 7–13 (1996).
[Crossref]

C. Pieralli, “Statistical estimation of point spread function applied to scanning near-field optical microscopy,” Opt. Commun. 108, 203–208 (1994).
[Crossref]

R. U. Masheri, H. Y. Tatsumi, Katayama, M. Ohtsu, “Observation of subcellular nanostructure of single neurons with an illumination mode photon scanning tunneling microscope,” Opt. Commun. 120, 325–334 (1995).
[Crossref]

C. J. R. Sheppard, M. Gu, X. Q. Mao, “Three-dimensional coherent transfer function in a reflection-mode confocal scanning microscope,” Opt. Commun. 81, 281–284 (1991).
[Crossref]

R. Carminati, J.-J. Greffet, “Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function,” Opt. Commun. 116, 316–321 (1995); erratum 120, 371 (1995).

Rev. Phys. Appl. (1)

M. Spajer, D. Courjon, K. Sarayedine, A. Jalocha, J. M. Vigoureux, “Microscopie en champ proche par réflexion,” Rev. Phys. Appl. 26, 111–112 (1989).

Ultramicroscopy (2)

O. Bergossi, M. Spajer, P. Schiavone, “Visualization of latent images by reflection near field optical microscopy,” Ultramicroscopy 61, 241–246 (1995).
[Crossref]

D. Barchiesi, D. Van Labeke, “A perturbative diffraction theory of a multilayer system: applications to near-field optical microscopy SNOM and STOM,” Ultramicroscopy 57, 196–203 (1995).
[Crossref]

Other (5)

D. Barchiesi, D. Van Labeke, “Scanning tunneling optical microscopy (stom): theoretical study of polarization effects with two models of tip,” in Near Field Optics, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Norwell, Mass., 1993), pp. 179–188.
[Crossref]

M. Vaez-Iravani, R. Toledo-Crow, “Amplitude, phase contrast, and polarization imaging in near field scanning optical microscopy,” in Near Field Optics, Series E: Applied Sciences, D. W. Pohl, D. Courjon, eds. (Kluwer Academic, Norwell, Mass., 1993), pp. 25–34.
[Crossref]

L. Novotny, D. W. Pohl, “Light propagation in scanning near-field optical microscopy,” in Photons and Local Probes, Othmar Marti, Rolf Möller, eds., Vol. 300 of Series E: Applied Sciences (Kluwer Academic, Norwell, Mass., 1995), pp. 21–34.

J. W. Goodman, Introduction à l’optique de Fourier et à l’holographie (Masson, Paris, 1972).

O. Bergossi, M. Spajer, “A scanning local probe interferometer and reflectometer: application to very low relief objects,” in Interferometric Fiber Sensing, E. Udd, R. P. Tatam, eds., Proc. SPIE2341, 238–248 (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Simulation. The sample is a 128-pixel line composed of two tracks whose size is 12 pixels and height 1 pixel, separated by 6 pixels. The imaging process uses a cosine psf of 4 pixels: a, reference simulated data (thick solid line) with a noise level of 0.1, and the test simulated data (thin line) involve a signal-to-noise ratio equal to 5 (thin solid line) and to 0.5 (thin dashed line); b, associated normalized logarithm of the Fourier spectra.

Fig. 2
Fig. 2

Simulation: a, simulated MTF applied to the simulated data (solid line); b, fit of the logarithm of the spectra (SLPS) shown in Fig. 1b; the thick solid line is associated with the reference line (Nr = 0.1). The thin lines correspond, respectively, to Nt = 0.2 (thin solid line) and to Nt = 2 (thin dashed line). The spline parameter is 0.005. Vertical lines point out the resolution: the minimum of the MTF in the low noise case (4 pixels) and 11 pixels in the case of high noise.

Fig. 3
Fig. 3

Resampled AFM data. The glass grating period is 384 nm, the tracks are quasi-rectangular with a height of 8 nm. The map size is 1900 nm × 1400 nm corresponding to 123 × 93 pixels.

Fig. 4
Fig. 4

Shear-force data. The grating period is 384 nm. The map size is 1900 nm over 1400 nm corresponding to 123 × 93 pixels.

Fig. 5
Fig. 5

a, Map of the estimated resolution in nanometers versus the number of lines taken into account in calculus and the spline parameter. The corresponding number of subimages extracted from the original is given by 93 divided by the number of rows. b, Corresponding map of the standard variance in nanometers.

Fig. 6
Fig. 6

Shear-force data. The object was built at Cornell University. The scanned size is 7000 nm × 5750 nm (128 pixels × 105 pixels). The scanned rows are 128 pixels long.

Fig. 7
Fig. 7

Optical data. The scanning characteristics are the same as in Fig. 6.

Fig. 8
Fig. 8

Shear-force and optical data. Scanned line 30 in Figs. 6 (dashed line) and 7 (solid line) are extracted. b, SLPS with spline parameter 0.01. The vertical lines show the resolution in optical data: 330 nm.

Fig. 9
Fig. 9

Shear-force and optical data. Scanned line 40 in Figs. 6 (dashed line) and 7 (solid line) are extracted. b, SLPS with spline parameter 0.01. The resolution in optical data is 280 nm (dashed line).

Tables (1)

Tables Icon

Table 1 Resolution and Standard Deviation on the Resolution versus the Number of Lines taken into Account in the Calculusa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Im x = Per x + Rel x psf x + N x ,
Im ¯ u = Per ¯ u + Rel ¯ u psf ¯ u + N ¯ u
= Per ¯ u + Rel ¯ u MTF u + N ¯ u ,

Metrics