Abstract

A powerful and simple method based on the use of a plano–concave microcuvette was investigated for measuring the absorption coefficient of highly absorbing liquids. A plano–convex lens put on a plane–parallel plate formed a microcuvette with small, continuously varying thicknesses. This microcuvette was filled with liquid and illuminated by a homogeneous beam. The parabolic variation of the liquid thickness generates a Gaussian spatial intensity distribution behind the cuvette. This Gaussian profile, detected by a CCD camera, was used to determine the absorption coefficient of the liquid. An absorption coefficient as high as 1.54 × 104 cm-1 was measured by use of high-concentration malachite green dye solutions. A comparison of the results with data extrapolated from those of conventional methods showed good agreement.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1989), Chap. 13, p. 614.
  2. D. A. Harrisc, C. L. Bashford, eds. Spectrophotometry and Spectrofluorimetry (IRL Press, Oxford, 1987), Chaps. 1 and 2, pp. 1–48.
  3. W. Demtröder, Laserspektroskopie (Springer-Verlag, Berlin, 1991), Chap. 6, pp. 245–282.
    [Crossref]
  4. T. W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895–898 (1972).
    [Crossref] [PubMed]
  5. G. H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
    [Crossref]
  6. A. L. Smirl, J. B. Clark, E. W. Van Stryland, B. R. Russel, “Population and rotational kinetics of the rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982).
    [Crossref]
  7. W. N. Hansen, “A new spectrometric technique using multiple attenuated total reflection,” Anal. Chem. 35, 765–766 (1963).
    [Crossref]
  8. W. N. Hansen, “Expanded formulas for attenuated total reflection and the derivation of absorption rules for single and multiple ATR spectrometer cells,” Spectrochim. Acta 21, 815–833 (1965).
    [Crossref]
  9. N. J. Harrick, F. K. du Pré, “Effective thickness of bulk materials and of thin films for internal reflection spectroscopy,” Appl. Opt. 5, 1739–1743 (1966).
    [Crossref] [PubMed]
  10. Schott Optisches Glas 311d (Schott Optical Glass Inc., Mainz, Germany, 1980).

1982 (1)

A. L. Smirl, J. B. Clark, E. W. Van Stryland, B. R. Russel, “Population and rotational kinetics of the rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982).
[Crossref]

1973 (1)

G. H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[Crossref]

1972 (1)

1966 (1)

1965 (1)

W. N. Hansen, “Expanded formulas for attenuated total reflection and the derivation of absorption rules for single and multiple ATR spectrometer cells,” Spectrochim. Acta 21, 815–833 (1965).
[Crossref]

1963 (1)

W. N. Hansen, “A new spectrometric technique using multiple attenuated total reflection,” Anal. Chem. 35, 765–766 (1963).
[Crossref]

Atkinson, G. H.

G. H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[Crossref]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1989), Chap. 13, p. 614.

Clark, J. B.

A. L. Smirl, J. B. Clark, E. W. Van Stryland, B. R. Russel, “Population and rotational kinetics of the rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982).
[Crossref]

Demtröder, W.

W. Demtröder, Laserspektroskopie (Springer-Verlag, Berlin, 1991), Chap. 6, pp. 245–282.
[Crossref]

du Pré, F. K.

Hänsch, T. W.

Hansen, W. N.

W. N. Hansen, “Expanded formulas for attenuated total reflection and the derivation of absorption rules for single and multiple ATR spectrometer cells,” Spectrochim. Acta 21, 815–833 (1965).
[Crossref]

W. N. Hansen, “A new spectrometric technique using multiple attenuated total reflection,” Anal. Chem. 35, 765–766 (1963).
[Crossref]

Harrick, N. J.

Kurylo, M. J.

G. H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[Crossref]

Laufer, A. H.

G. H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[Crossref]

Russel, B. R.

A. L. Smirl, J. B. Clark, E. W. Van Stryland, B. R. Russel, “Population and rotational kinetics of the rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982).
[Crossref]

Smirl, A. L.

A. L. Smirl, J. B. Clark, E. W. Van Stryland, B. R. Russel, “Population and rotational kinetics of the rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982).
[Crossref]

Van Stryland, E. W.

A. L. Smirl, J. B. Clark, E. W. Van Stryland, B. R. Russel, “Population and rotational kinetics of the rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982).
[Crossref]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1989), Chap. 13, p. 614.

Anal. Chem. (1)

W. N. Hansen, “A new spectrometric technique using multiple attenuated total reflection,” Anal. Chem. 35, 765–766 (1963).
[Crossref]

Appl. Opt. (2)

J. Chem. Phys. (2)

G. H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[Crossref]

A. L. Smirl, J. B. Clark, E. W. Van Stryland, B. R. Russel, “Population and rotational kinetics of the rhodamine B monomer and dimer: picosecond transient spectrometry,” J. Chem. Phys. 77, 631–640 (1982).
[Crossref]

Spectrochim. Acta (1)

W. N. Hansen, “Expanded formulas for attenuated total reflection and the derivation of absorption rules for single and multiple ATR spectrometer cells,” Spectrochim. Acta 21, 815–833 (1965).
[Crossref]

Other (4)

Schott Optisches Glas 311d (Schott Optical Glass Inc., Mainz, Germany, 1980).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, 1989), Chap. 13, p. 614.

D. A. Harrisc, C. L. Bashford, eds. Spectrophotometry and Spectrofluorimetry (IRL Press, Oxford, 1987), Chaps. 1 and 2, pp. 1–48.

W. Demtröder, Laserspektroskopie (Springer-Verlag, Berlin, 1991), Chap. 6, pp. 245–282.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of the plano–concave microcuvette: C, the central point of the cuvette; I0, the intensity of the incoming light, which in this figure is assumed to be homogeneous for the sake of simplicity; I(r), the value of the transmitted, Gaussian intensity profile at the r radial distance; Δ(r), the liquid-layer thickness at r distance;R, the radius of curvature of the lens.

Fig. 2
Fig. 2

Experimental setup for the measurement of the absorption coefficient of highly absorbing liquids by the microcuvette: L’s, lenses; M’s, mirrors; F, filter.

Fig. 3
Fig. 3

(a), (b), (c) CCD pictures of light intensity profile behind the microcuvette; contour plots of the calibrated transmission for (see text) (d) case I, f1 = 4-cm plano–convex lens was in the microcuvette and c1 = 10-2 mol/L malachite green was dissolved in ethylene glycol; (e) case II, f2 = 4 cm, c2 = 10-1 mol/L; (f) case III, f3 = 8 cm, c3 = 10-1 mol/L.

Fig. 4
Fig. 4

Results of the measurements and the fitted Gaussian functions in (a) case I, (b) case II, (c) case III.

Fig. 5
Fig. 5

OD = εcd versus c on a log–log scale; εspec was calculated from the equation of the line. Inset, spectrum of the malachite green dissolved in ethylene glycol measured with a spectrophotometer at c = 10-4 mol/L, d = 0.1 cm.

Tables (1)

Tables Icon

Table 1 The b Parametersa of the Gaussian Functions Fitted to the Calibrated Transmission Profiles, Calculated Absorption Coefficients α, and Molar Absorptivities ε

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ir=I0rτrexp-αΔrI0rτ exp-αr22R,
Tr=τ exp-αr22R,
α=2R1b2,
Qr=TArTBr=IArIBr=s exp-αr22R,

Metrics