Abstract

Relief microlenses and micromirrors are fabricated in dichromated gelatin layers. Microelements typically have diameters of approximately a few hundred micrometers and have focal distances ranging from 4 to 15 mm.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Optical Engineering, Vol. 33, No. 11, has a section dedicated to micro-optics.
  2. Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamadi, L. Beiser, eds., Proc. SPIE2383, (1995). The whole volume is dedicated to micro-optics.
  3. Z. D. Popovic, R. A. Sprague, G. A. Neville Cornelli, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef] [PubMed]
  4. D. Newman, R. W. Hawley, D. L. Goeckel, R. D. Crawford, S. Abraham, N. C. Gallagher, “Efficient storage, computation and exposure of computer generated holograms by electron beam lithography,” Appl. Opt. 32, 2555–2565 (1983).
    [CrossRef]
  5. M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous - relief micro - optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
    [CrossRef]
  6. U. Krackhardt, J. Schwider, M. Schrader, N. Streibl, “Synthetic holograms written by a laser pattern generator,” Opt. Eng. 32, 781–785 (1993).
    [CrossRef]
  7. D. L. Kendall, G. R. De Guel, S. Guel - Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
    [CrossRef]
  8. D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2 micromachining of silicon for lenses templates, geodesic geolenses and other applications,” Opt. Eng. 33, 3578–3588 (1994).
    [CrossRef]
  9. N. F. Borelli, D. L. Morse, “Microlens arrays produced by a photolyc technique,” Appl. Opt. 27, 476–479 (1988).
    [CrossRef]
  10. G. Beadie, N. M. Lawandy, “Single - step laser fabrication of refractive microlens in semiconductor doped glasses,” Opt. Lett. 20, 2153–2155 (1995).
    [CrossRef]
  11. S. Calixto, G. P. Padilla, “Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation,” Appl. Opt.
  12. D. Meyerhoffer, “Spatial resolution of relief holograms in dichromated gelatin,” Appl. Opt. 10, 416–421 (1971).
    [CrossRef]
  13. “Gelatin Powder,” in Catalog 2124-01 (J. T. Baker Chemicals, Phillipsburg, N.J.).
  14. H. M. Smith, ed., Holographic Recording Materials (Springer-Verlag, New York, 1977), Chap. 3, pp. 75–85.
  15. D. Malacara, ed., Optical Shop Testing (Wiley, New York, 1978), Appendix 1.

1995 (1)

1994 (2)

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2 micromachining of silicon for lenses templates, geodesic geolenses and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous - relief micro - optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

1993 (1)

U. Krackhardt, J. Schwider, M. Schrader, N. Streibl, “Synthetic holograms written by a laser pattern generator,” Opt. Eng. 32, 781–785 (1993).
[CrossRef]

1988 (3)

1983 (1)

1971 (1)

Abraham, S.

Allen, T. A.

D. L. Kendall, G. R. De Guel, S. Guel - Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Beadie, G.

Borelli, N. F.

Crawford, R. D.

De Guel, G. R.

D. L. Kendall, G. R. De Guel, S. Guel - Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Dogges, T. G.

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2 micromachining of silicon for lenses templates, geodesic geolenses and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

Eaton, W. P.

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2 micromachining of silicon for lenses templates, geodesic geolenses and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous - relief micro - optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Gallagher, N. C.

Garcia, G. J.

D. L. Kendall, G. R. De Guel, S. Guel - Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Goeckel, D. L.

Guel - Sandoval, S.

D. L. Kendall, G. R. De Guel, S. Guel - Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Hawley, R. W.

Kendall, D. L.

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2 micromachining of silicon for lenses templates, geodesic geolenses and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

D. L. Kendall, G. R. De Guel, S. Guel - Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Krackhardt, U.

U. Krackhardt, J. Schwider, M. Schrader, N. Streibl, “Synthetic holograms written by a laser pattern generator,” Opt. Eng. 32, 781–785 (1993).
[CrossRef]

Lawandy, N. M.

Manginell, R.

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2 micromachining of silicon for lenses templates, geodesic geolenses and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

Meyerhoffer, D.

Morse, D. L.

Neville Cornelli, G. A.

Newman, D.

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous - relief micro - optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Popovic, Z. D.

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous - relief micro - optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Schrader, M.

U. Krackhardt, J. Schwider, M. Schrader, N. Streibl, “Synthetic holograms written by a laser pattern generator,” Opt. Eng. 32, 781–785 (1993).
[CrossRef]

Schutz, H.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous - relief micro - optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

Schwider, J.

U. Krackhardt, J. Schwider, M. Schrader, N. Streibl, “Synthetic holograms written by a laser pattern generator,” Opt. Eng. 32, 781–785 (1993).
[CrossRef]

Sprague, R. A.

Streibl, N.

U. Krackhardt, J. Schwider, M. Schrader, N. Streibl, “Synthetic holograms written by a laser pattern generator,” Opt. Eng. 32, 781–785 (1993).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

D. L. Kendall, G. R. De Guel, S. Guel - Sandoval, G. J. Garcia, T. A. Allen, “Chemically etched micromirrors in silicon,” Appl. Phys. Lett. 52, 836–837 (1988).
[CrossRef]

Opt. Eng. (3)

D. L. Kendall, W. P. Eaton, R. Manginell, T. G. Dogges, “Micromirror arrays using KOH:H2 micromachining of silicon for lenses templates, geodesic geolenses and other applications,” Opt. Eng. 33, 3578–3588 (1994).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous - relief micro - optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994).
[CrossRef]

U. Krackhardt, J. Schwider, M. Schrader, N. Streibl, “Synthetic holograms written by a laser pattern generator,” Opt. Eng. 32, 781–785 (1993).
[CrossRef]

Opt. Lett. (1)

Other (6)

S. Calixto, G. P. Padilla, “Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation,” Appl. Opt.

“Gelatin Powder,” in Catalog 2124-01 (J. T. Baker Chemicals, Phillipsburg, N.J.).

H. M. Smith, ed., Holographic Recording Materials (Springer-Verlag, New York, 1977), Chap. 3, pp. 75–85.

D. Malacara, ed., Optical Shop Testing (Wiley, New York, 1978), Appendix 1.

Optical Engineering, Vol. 33, No. 11, has a section dedicated to micro-optics.

Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamadi, L. Beiser, eds., Proc. SPIE2383, (1995). The whole volume is dedicated to micro-optics.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical configuration to fabricate microlenses and micromirrors.

Fig. 2
Fig. 2

(a) Microphotograph of the surfaces of four microlenses. (b) Image given by an interference microscope when the lenses in (a) were investigated. The central part of each lens shows well-behaved circular interference fringes and has a diameter of ∼400 µm. (c) Images given by the four microlenses when a microscope was used. Lens in the lower right-hand corner showed a less defined image because it presented a different focal distance. This can be seen in (b).

Fig. 3
Fig. 3

Optical configuration used to investigate surface microlenses and images given by them.

Fig. 4
Fig. 4

Micromirrors can be fabricated on DCG by evaporating a thin layer of aluminum over them. Light can impinge the elements by (a) the substrate side, giving convex micromirrors; (b) directly on the aluminized surface, giving concave mirrors.

Fig. 5
Fig. 5

(a) Microphotograph of the surface of three concave micromirrors. Images given by the (b) smallest-, (c) medium-, (d) biggest-sized mirrors. Each image was focused in a different plane. Note that images have different sizes because of different focal distances.

Fig. 6
Fig. 6

Image given by an interference microscope of the elements depicted in Fig. 5.

Fig. 7
Fig. 7

(a) Image of the surface of three convex mirrors, (b) image of the character given by the medium-sized mirror.

Fig. 8
Fig. 8

Mask used to make negative lenses.

Fig. 9
Fig. 9

(a) Microphotograph of the surface of three negative lenses, (b) The lens made with a smaller inner diameter gave an erected image.

Fig. 10
Fig. 10

Image given by an interference microscope of the elements shown in Fig. 9.

Fig. 11
Fig. 11

(a) Image given by an interference microscope of a microlens fabricated with a mask having parabolic transmittance, (b) image given by the microlens.

Fig. 12
Fig. 12

Images given by an array of lenses made by an interference method.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f=D2/16S,

Metrics