Abstract

We present a steady-state radially resolved diffuse reflectance spectrometer capable of measuring the absorption and transport scattering spectra of tissue-simulating phantoms over an adjustable 170-nm wavelength interval in the visible and near infrared. Measurements in a variety of phantoms are demonstrated over the relevant range of tissue optical properties, and the accuracy of the instrument is found to be approximately 10% in both scattering and absorption. Monte Carlo simulations designed to test the accuracy of the instrument are presented that support the experimental findings.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue

Alwin Kienle, Lothar Lilge, Michael S. Patterson, Raimund Hibst, Rudolf Steiner, and Brian C. Wilson
Appl. Opt. 35(13) 2304-2314 (1996)

Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements

Steen J. Madsen, Brian C. Wilson, Michael S. Patterson, Young D. Park, Steven L. Jacques, and Yaron Hefetz
Appl. Opt. 31(18) 3509-3517 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription