Abstract

We present a steady-state radially resolved diffuse reflectance spectrometer capable of measuring the absorption and transport scattering spectra of tissue-simulating phantoms over an adjustable 170-nm wavelength interval in the visible and near infrared. Measurements in a variety of phantoms are demonstrated over the relevant range of tissue optical properties, and the accuracy of the instrument is found to be approximately 10% in both scattering and absorption. Monte Carlo simulations designed to test the accuracy of the instrument are presented that support the experimental findings.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).
    [Crossref] [PubMed]
  2. F. F. Jobsis, “Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
    [Crossref]
  3. A. E. Profio, D. R. Doiron, “Dosimetry considerations in phototherapy,” Med. Phys. 8, 190–196 (1981).
    [Crossref] [PubMed]
  4. B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
    [Crossref] [PubMed]
  5. W. J. M. van der Putten, M. J. C. van Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639–645 (1983).
    [Crossref] [PubMed]
  6. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60-61, 281–286 (1994).
    [Crossref]
  7. M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
    [Crossref] [PubMed]
  8. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
    [Crossref]
  9. L. Reynolds, C. Johnson, A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt. 15, 2059–2067 (1976).
    [Crossref] [PubMed]
  10. R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: theory,” Appl. Opt. 22, 2456–2462 (1983).
    [Crossref] [PubMed]
  11. J. M. Steinke, A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A 5, 813–822 (1988).
    [Crossref] [PubMed]
  12. J. M. Schmitt, G. X. Zhou, E. C. Walker, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
    [Crossref] [PubMed]
  13. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
    [Crossref] [PubMed]
  14. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
    [Crossref] [PubMed]
  15. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [Crossref] [PubMed]
  16. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
    [Crossref] [PubMed]
  17. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [Crossref] [PubMed]
  18. M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
    [Crossref]
  19. G. Eason, A. R. Veitch, R. M. Nisbet, F. W. Turnbull, “The theory of the backscattering of light by blood,” J. Phys. D 11, 1463–1479 (1978).
    [Crossref]
  20. B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Direction and Applications in Photodynamic Therapy, C. J. Gomer, ed., Vol. IS6 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–232.
  21. R. C. Haskell, L. O. Svassand, T. Tsay, T. Feng, M. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [Crossref]
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.
  23. S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
    [Crossref] [PubMed]
  24. M. S. Patterson, J. Hayward, Department of Medical Physics, McMaster University, Hamilton, Ontario L8V5C2, Canada (personal communication, 1995).
  25. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
    [Crossref] [PubMed]
  26. S. J. Madsen, E. R. Anderson, R. C. Haskell, B. J. Tromberg, “Portable high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).
    [Crossref] [PubMed]
  27. S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfono, eds. Proc. SPIE2389, 486–495, (1995).
  28. B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
    [Crossref] [PubMed]

1995 (2)

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[Crossref] [PubMed]

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[Crossref] [PubMed]

1994 (4)

S. J. Madsen, E. R. Anderson, R. C. Haskell, B. J. Tromberg, “Portable high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).
[Crossref] [PubMed]

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[Crossref] [PubMed]

R. C. Haskell, L. O. Svassand, T. Tsay, T. Feng, M. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[Crossref]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60-61, 281–286 (1994).
[Crossref]

1992 (1)

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

1991 (2)

1990 (2)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[Crossref]

J. M. Schmitt, G. X. Zhou, E. C. Walker, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
[Crossref] [PubMed]

1989 (1)

1988 (3)

J. M. Steinke, A. P. Shepherd, “Diffusion model of the optical absorbance of whole blood,” J. Opt. Soc. Am. A 5, 813–822 (1988).
[Crossref] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

1987 (1)

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[Crossref] [PubMed]

1986 (1)

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[Crossref] [PubMed]

1983 (2)

W. J. M. van der Putten, M. J. C. van Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639–645 (1983).
[Crossref] [PubMed]

R. A. J. Groenhuis, H. A. Ferwerda, J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: theory,” Appl. Opt. 22, 2456–2462 (1983).
[Crossref] [PubMed]

1981 (1)

A. E. Profio, D. R. Doiron, “Dosimetry considerations in phototherapy,” Med. Phys. 8, 190–196 (1981).
[Crossref] [PubMed]

1978 (1)

G. Eason, A. R. Veitch, R. M. Nisbet, F. W. Turnbull, “The theory of the backscattering of light by blood,” J. Phys. D 11, 1463–1479 (1978).
[Crossref]

1977 (1)

F. F. Jobsis, “Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref]

1976 (1)

Anderson, E. R.

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[Crossref] [PubMed]

Berndt, K. W.

Boas, D. A.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[Crossref] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60-61, 281–286 (1994).
[Crossref]

Boretsky, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Burns, D. M.

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[Crossref] [PubMed]

Chance, B.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[Crossref] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60-61, 281–286 (1994).
[Crossref]

B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Cohen, P.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfono, eds. Proc. SPIE2389, 486–495, (1995).

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfono, eds. Proc. SPIE2389, 486–495, (1995).

Doiron, D. R.

A. E. Profio, D. R. Doiron, “Dosimetry considerations in phototherapy,” Med. Phys. 8, 190–196 (1981).
[Crossref] [PubMed]

Eason, G.

G. Eason, A. R. Veitch, R. M. Nisbet, F. W. Turnbull, “The theory of the backscattering of light by blood,” J. Phys. D 11, 1463–1479 (1978).
[Crossref]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Direction and Applications in Photodynamic Therapy, C. J. Gomer, ed., Vol. IS6 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–232.

Feather, J. W.

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[Crossref] [PubMed]

Feng, T.

Ferwerda, H. A.

Finander, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

Greenfeld, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Groenhuis, R. A. J.

Haskell, R. C.

Hayward, J.

M. S. Patterson, J. Hayward, Department of Medical Physics, McMaster University, Hamilton, Ontario L8V5C2, Canada (personal communication, 1995).

Hiraoka, M.

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[Crossref] [PubMed]

Ishimaru, A.

Jacques, S. L.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[Crossref]

Jobsis, F. F.

F. F. Jobsis, “Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref]

Johnson, C.

Kaufmann, K.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Kirkpatrick, P.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfono, eds. Proc. SPIE2389, 486–495, (1995).

Lakowicz, J. R.

Leigh, J. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Levy, W.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Liu, H.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[Crossref] [PubMed]

Madsen, S. J.

Matcher, S. J.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfono, eds. Proc. SPIE2389, 486–495, (1995).

McAdams, M.

Miyake, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Moulton, J. D.

Nahid, K.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfono, eds. Proc. SPIE2389, 486–495, (1995).

Nioka, S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Nisbet, R. M.

G. Eason, A. R. Veitch, R. M. Nisbet, F. W. Turnbull, “The theory of the backscattering of light by blood,” J. Phys. D 11, 1463–1479 (1978).
[Crossref]

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60-61, 281–286 (1994).
[Crossref]

Patterson, M. S.

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[Crossref] [PubMed]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[Crossref] [PubMed]

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[Crossref]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Direction and Applications in Photodynamic Therapy, C. J. Gomer, ed., Vol. IS6 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–232.

M. S. Patterson, J. Hayward, Department of Medical Physics, McMaster University, Hamilton, Ontario L8V5C2, Canada (personal communication, 1995).

Pogue, B. W.

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[Crossref] [PubMed]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

Profio, A. E.

A. E. Profio, D. R. Doiron, “Dosimetry considerations in phototherapy,” Med. Phys. 8, 190–196 (1981).
[Crossref] [PubMed]

Pushka, W.

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[Crossref] [PubMed]

Reynolds, L.

Schmitt, J. M.

Schwartz, E.

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[Crossref]

Schweiger, M.

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[Crossref] [PubMed]

Shepherd, A. P.

Smith, D. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Steinke, J. M.

Svassand, L. O.

Ten Bosch, J. J.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

Tromberg, B. J.

Tsay, T.

Turnbull, F. W.

G. Eason, A. R. Veitch, R. M. Nisbet, F. W. Turnbull, “The theory of the backscattering of light by blood,” J. Phys. D 11, 1463–1479 (1978).
[Crossref]

van der Putten, W. J. M.

W. J. M. van der Putten, M. J. C. van Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639–645 (1983).
[Crossref] [PubMed]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

van Gemert, M. J. C.

W. J. M. van der Putten, M. J. C. van Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639–645 (1983).
[Crossref] [PubMed]

Veitch, A. R.

G. Eason, A. R. Veitch, R. M. Nisbet, F. W. Turnbull, “The theory of the backscattering of light by blood,” J. Phys. D 11, 1463–1479 (1978).
[Crossref]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

Walker, E. C.

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

Wilson, B. C.

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[Crossref] [PubMed]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[Crossref]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[Crossref] [PubMed]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[Crossref] [PubMed]

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[Crossref]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Direction and Applications in Photodynamic Therapy, C. J. Gomer, ed., Vol. IS6 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–232.

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

Yodh, A. G.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[Crossref] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60-61, 281–286 (1994).
[Crossref]

Yoshioka, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Young, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Zhang, Y.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[Crossref] [PubMed]

Zhou, G. X.

Annu. Rev. Biophys. Biophys. Chem. (1)

B. Chance, “Optical method,” Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).
[Crossref] [PubMed]

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[Crossref]

J. Lumin. (1)

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities,” J. Lumin. 60-61, 281–286 (1994).
[Crossref]

J. Opt. Soc. Am. A (3)

J. Phys. D (1)

G. Eason, A. R. Veitch, R. M. Nisbet, F. W. Turnbull, “The theory of the backscattering of light by blood,” J. Phys. D 11, 1463–1479 (1978).
[Crossref]

Med. Phys. (2)

A. E. Profio, D. R. Doiron, “Dosimetry considerations in phototherapy,” Med. Phys. 8, 190–196 (1981).
[Crossref] [PubMed]

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (1)

M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987).
[Crossref] [PubMed]

Phys. Med. Biol. (6)

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988).
[Crossref] [PubMed]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[Crossref] [PubMed]

W. J. M. van der Putten, M. J. C. van Gemert, “A modeling approach to the detection of subcutaneous tumours by haematoporphyrin-derivative fluorescence,” Phys. Med. Biol. 28, 639–645 (1983).
[Crossref] [PubMed]

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[Crossref] [PubMed]

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Determination of optical properties and blood oxygenation in tissue using continuous NIR light,” Phys. Med. Biol. 40, 1983–1993 (1995).
[Crossref] [PubMed]

B. W. Pogue, M. S. Patterson, “Frequency-domain optical absorption spectroscopy of finite volumes using diffusion theory,” Phys. Med. Biol. 39, 1157–1180 (1994).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. USA 85, 4971–4975 (1988).
[Crossref] [PubMed]

Science (1)

F. F. Jobsis, “Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[Crossref]

Other (5)

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[Crossref]

M. S. Patterson, J. Hayward, Department of Medical Physics, McMaster University, Hamilton, Ontario L8V5C2, Canada (personal communication, 1995).

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfono, eds. Proc. SPIE2389, 486–495, (1995).

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Direction and Applications in Photodynamic Therapy, C. J. Gomer, ed., Vol. IS6 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990), pp. 219–232.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992), pp. 683–687.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Optical coefficients μa(□) and μs′ (♦) returned as a result of the fitting of Eq. (4) to radially resolved diffuse reflectance data generated by a Monte Carlo simulation with optical properties of μs′ = 1.00 mm-1 and μa = 0.01 mm-1. Eleven fits of Eq. (4) were made to the same Monte Carlo data while the radial distance between the source and the first included Monte Carlo data point was varied from ∼0.27 to ∼4.2 mm. The error bars represent the standard deviation of the fitted values obtained from using the statistical error associated with each diffuse reflectance data point as a measure of its uncertainty. Because μs′ = 1.00 mm-1, the minimum source–detector separation in millimeters (top axis) is nearly identical to the minimum source–detector separation expressed in terms of the transport mean free path (lower axis).

Fig. 2
Fig. 2

χν2 goodness of fit parameter for the fits presented in Fig. 1.

Fig. 3
Fig. 3

Absorption coefficient (data points) determined from the fitting of Eq. (4) to radially resolved diffuse reflectance data generated from Monte Carlo calculations as a function of the actual absorption coefficient used in the simulations (line). The absorption coefficient was varied from 0.0001 to 0.5 mm-1 while the transport scattering coefficient was held constant at 1.5 mm-1. The minimum source–detector separation was held constant at 1.0 mm. The transport albedo ranges from 0.9999 (μa = 0.0001 mm-1) to 0.75 (μa = 0.5 mm-1). Error bars are obscured by the points in some cases.

Fig. 4
Fig. 4

Transport scattering coefficient (data points) determined from fits of the radially resolved diffuse reflectance data illustrated in Fig. 3. The horizontal line indicates the actual transport scattering coefficient used in the simulations, which was 1.5 mm-1.

Fig. 5
Fig. 5

Absorption coefficient (data points) determined from the fitting of Eq. (4) to Monte Carlo diffuse reflectance data in which the absorption coefficient was held constant at 0.01 mm-1 while the transport scattering coefficient was varied from 0.5 to 2.25 mm-1. The horizontal line indicates the actual absorption coefficient used in the simulations, which was 0.01 mm-1. The transport albedo ranges from 0.980 (μs′ = 0.5 mm-1) to 0.996 (μs′ = 2.25 mm-1).

Fig. 6
Fig. 6

Transport scattering coefficient (data points) determined from fits of the Monte Carlo diffuse reflectance data illustrated in Fig. 5 as a function of the actual transport scattering coefficient used in the simulations (line). Error bars are obscured by the data points in some cases.

Fig. 7
Fig. 7

Radially resolved, white-light, steady-state diffuse reflectance spectrometer.

Fig. 8
Fig. 8

Probe for detection of diffuse radial reflectance.

Fig. 9
Fig. 9

Background-subtracted absorption spectra (data points) of several concentrations of MnTPPS in 1.25% Liposyn-II reconstructed from diffuse reflectance measurements. The error bars represent the standard deviation of the fitted values of μa. The standard deviation in the diffuse reflectance data points used in the fifflng algorithm resulted from assuming Poisson counting statistics to determine the uncertainty in the counts read from the CCD camera. The lines are absorption spectra from spectrophotometer measurements of nonscattering samples with amplitudes scaled to provide the best fit to the data. The single linear-fitting parameter reveals the concentration of MnTPPS in the phantom. Actual concentrations of MnTPPS range from 0.15 to 1.25 µM.

Fig. 10
Fig. 10

Actual (solid lines) and fitted concentrations (data points) of MnTPPS in a 1.25% Liposyn-II phantom. The upper and lower solid lines indicate the range of uncertainty in the actual MnTPPS concentration that is due to 1.0% uncertainties assigned to the miropipettes and graduated cylinders used to prepare the phantom. The fitted concentrations were determined by the use of the scaling parameter obtained from fits of cuvette spectra from nonscattering MnTPPS solutions to absorption spectra reconstructed from diffuse reflectance measurements. The maximum value of μa (at λ ≈ 560 nm) in the reconstructed absorption spectra ranges from (a) 2.5 × 10-5 to 2.5 × 10-4 mm-1, (b) 7.0 × 10-4 to 4.0 × 10-3 mm-1, (c) 5.0 × 10-3 to 3.5 × 10-2 mm-1. Panel (d) illustrates the full range of concentrations used in the experiments (left and bottom axes), as well as the absorption coefficient at the 560-nm peak of the absorption spectrum (right axis). Error bars are obscured by the data points in some cases.

Fig. 11
Fig. 11

Scattering spectra of a 500-mL 1.25% Liposyn-II phantom determined by the fitting of Eq. (4) to radially resolved diffuse reflectance measurements. Each separate curve represents the scattering spectrum after the addition of various concentrations of MnTPPS ranging from 0.15 to 1.25 µM. The spectra are all within one measurement standard deviation of one another.

Fig. 12
Fig. 12

Scattering spectra of a phantom containing 500 mL water and varying amounts of 0.519-µm-diameter polystyrene microspheres in aqueous suspension. The smooth (dashed) curves indicate the transport scattering coefficient as predicted by Mie theory. The noisy curves are fitted values of μs′ from experimental diffuse radial reflectance data. The density of scatterers decreases from 2.79 × 1010 mL-1 in (a) to 1.58 × 1010 mL-1 in (d).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Rρ=a4π1μtμeff+1r1exp-μeffr1r12+1μt+4A3μt×μeff+1r2exp-μeffr2r22,
r1=1μt2+ρ21/2,
r2=1μt+4A3μt2+ρ21/2.
Rd norm=RdρRdρnorm
Rdρ; λ=Rsρ; λ-BLsλ-B Lcλ-BRcρ; λ-B1Tρ; λ,

Metrics