K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithm,” IEEE Trans. Med. Imag. 14, 504–514 (1995).

[CrossRef]

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).

[CrossRef]
[PubMed]

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).

[CrossRef]
[PubMed]

R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

S. J. Madsen, E. R. Anderson, R. C. Haskell, B. J. Tromberg, “Portable,high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).

[CrossRef]
[PubMed]

E. M. Sevick, J. J. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994).

[CrossRef]
[PubMed]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).

[CrossRef]
[PubMed]

J. A. Moon, J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).

[CrossRef]
[PubMed]

J. B. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).

[CrossRef]
[PubMed]

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues—a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).

[CrossRef]

S. R. Arridge, M. Schweijer, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–308 (1993).

[CrossRef]
[PubMed]

T. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state, diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

L. I. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithm,” Physica D 60, 259–268 (1992).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweijer, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–308 (1993).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweijer, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–308 (1993).

[CrossRef]
[PubMed]

R. L. Egan, Breast Imaging: Diagnosis and Morphology of Breast Diseases (Saunders, Philadelphia, Pa., 1988).

T. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state, diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, T. J. Farrell, “Forward and inverse calculations for 3D frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 328–339 (1995).

[CrossRef]

L. I. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithm,” Physica D 60, 259–268 (1992).

[CrossRef]

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweijer, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–308 (1993).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).

[CrossRef]

K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 19, 3447–3458 (1996).

[CrossRef]

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Indirect optical image reconstruction with a cw He-Ne laser for breast cancer detection,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 615–620 (1995).

[CrossRef]

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithm,” IEEE Trans. Med. Imag. 14, 504–514 (1995).

[CrossRef]

J. A. Moon, J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).

[CrossRef]
[PubMed]

J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).

[CrossRef]
[PubMed]

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithm,” IEEE Trans. Med. Imag. 14, 504–514 (1995).

[CrossRef]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

L. I. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithm,” Physica D 60, 259–268 (1992).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Indirect optical image reconstruction with a cw He-Ne laser for breast cancer detection,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 615–620 (1995).

[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).

[CrossRef]
[PubMed]

T. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state, diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, T. J. Farrell, “Forward and inverse calculations for 3D frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 328–339 (1995).

[CrossRef]

K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 19, 3447–3458 (1996).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).

[CrossRef]
[PubMed]

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithm,” IEEE Trans. Med. Imag. 14, 504–514 (1995).

[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Indirect optical image reconstruction with a cw He-Ne laser for breast cancer detection,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 615–620 (1995).

[CrossRef]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, T. J. Farrell, “Forward and inverse calculations for 3D frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 328–339 (1995).

[CrossRef]

J. A. Moon, J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).

[CrossRef]
[PubMed]

J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).

[CrossRef]
[PubMed]

L. I. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithm,” Physica D 60, 259–268 (1992).

[CrossRef]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweijer, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–308 (1993).

[CrossRef]
[PubMed]

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithm,” IEEE Trans. Med. Imag. 14, 504–514 (1995).

[CrossRef]

T. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state, diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

E. M. Sevick, J. J. Frisoli, C. L. Burch, J. R. Lakowicz, “Localization of absorbers in scattering media by use of frequency-domain measurements of time-dependent photon migration,” Appl. Opt. 33, 3562–3570 (1994).

[CrossRef]
[PubMed]

K. D. Paulsen, H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total variation minimization,” Appl. Opt. 19, 3447–3458 (1996).

[CrossRef]

K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, J. M. Sullivan, “A dual mesh scheme for finite element based reconstruction algorithm,” IEEE Trans. Med. Imag. 14, 504–514 (1995).

[CrossRef]

R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).

[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).

[CrossRef]

J. B. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).

[CrossRef]
[PubMed]

T. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state, diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).

[CrossRef]
[PubMed]

K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995).

[CrossRef]
[PubMed]

M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995).

[CrossRef]
[PubMed]

S. R. Arridge, M. Schweijer, M. Hiraoka, D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–308 (1993).

[CrossRef]
[PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).

[CrossRef]
[PubMed]

J. C. Hebden, A. H. Gandjbakhche, “Experimental validation of an elementary formula for estimating spatial resolution for optical transillumination imaging,” Med. Phys. 22, 1271–1272 (1995).

[CrossRef]
[PubMed]

J. A. Moon, J. Reintjes, “Image resolution by use of multiply scattered light,” Opt. Lett. 19, 521–523 (1994).

[CrossRef]
[PubMed]

J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993).

[CrossRef]
[PubMed]

H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Simultaneous reconstruction of absorption and scattering profiles in turbid media from near-infrared frequency-domain data,” Opt. Lett. 20, 2128–2130 (1995).

[CrossRef]
[PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).

[CrossRef]
[PubMed]

S. J. Madsen, E. R. Anderson, R. C. Haskell, B. J. Tromberg, “Portable,high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 19, 1934–1936 (1994).

[CrossRef]
[PubMed]

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues—a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).

[CrossRef]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).

[CrossRef]
[PubMed]

B. W. Pogue, M. S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a simple system for frequency domain diffuse optical tomography,” Phys. Med. Biol. 40, 1709–1729 (1995).

[CrossRef]
[PubMed]

L. I. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithm,” Physica D 60, 259–268 (1992).

[CrossRef]

B. W. Pogue, M. S. Patterson, T. J. Farrell, “Forward and inverse calculations for 3D frequency-domain diffuse optical tomography,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 328–339 (1995).

[CrossRef]

M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Ref. 1, pp. 513–533.

R. L. Barbour, H. Graber, Y. Wang, J. Chang, R. Aronson, “Perturbation approach for optical diffusion tomography using continuous-wave and time-resolved data,” in Ref. 1, pp. 87–120.

S. R. Arridge, “Forward and inverse problems in time-resolved infrared imaging,” in Ref. 1, pp. 35–64.

H. Graber, J. Chang, R. Aronson, R. L. Barbour, “A perturbation model for imaging in dense scattering media: derivation and evaluation of imaging operators,” in Ref. 1, pp. 121–143.

R. L. Egan, Breast Imaging: Diagnosis and Morphology of Breast Diseases (Saunders, Philadelphia, Pa., 1988).

R. Berg, S. Andersson-Engels, S. Svanberg, “Time-resolved transillumination imaging,” in Ref. 1, pp. 397–424.

H. Jiang, K. D. Paulsen, U. L. Osterberg, “Indirect optical image reconstruction with a cw He-Ne laser for breast cancer detection,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. Alfano, eds., Proc. SPIE2389, 615–620 (1995).

[CrossRef]

G. Muller, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Y. Yamishita, M. Kaneko, “Infrared diaphanoscopy for medical diagnosis,” in Ref. 1, pp. 283–316.