Abstract

We report on a technique utilizing time-resolved detection of laser-induced stress transients for the measurement of optical properties in turbid media specifically suitable for biological tissues. The method was tested initially in nonscattering absorbing media so that it could be compared with spectrophotometry. The basis of this method is provided by the conditions of temporal stress confinement in the irradiated volume where the pressure generated in tissues heated instantly by laser pulses is proportional to the absorbed laser energy density, and the exponential profile of the initial stress distribution in the irradiated volume corresponds to thez-axial distribution of the absorbed laser fluence. Planar thermoelastic waves can propagate in water-containing media with minimal distortion, and their axial profiles can be detected by an acoustic transducer with sufficient temporal resolution. The acoustic waves induced by14-ns laser pulses in nonscattering media, turbid gels, and tissues were measured by a piezoelectric transducer with a 3-ns response time. Temporal profiles of stress transients yielded z-axial distributions of the absorbed laser energy in turbid and opaque media, provided that the speed of sound in these media was known. The absorption and effective scattering coefficients of beef liver, dog prostate, and human aortic atheroma at three wavelengths, 1064 nm (in near infrared), 532 nm(visible), and 355 nm (near UV), were deduced from laser-induced stress profiles with additional measurements of total diffuse reflectance.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. P. Zarov, V. S. Letokhov, Laser Opto-Acoustic Spectroscopy (Springer-Verlag, New York, 1984).
  2. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
    [CrossRef]
  3. E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by Ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
    [CrossRef]
  4. M. W. Sigrist, “Laser generated acoustic waves in liquids and solids,” J. Appl. Phys. 60, R83–R121 (1986
    [CrossRef]
  5. F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50 (15), 1019–1021 (1987).
    [CrossRef]
  6. F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2200 (1988).
    [CrossRef]
  7. A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101. (1993).
    [CrossRef]
  8. A. A. Oraevsky, “A nanosecond acoustic transducer with applications in laser medicine,” IEEE/LEOS Newsletter 8 (1), 6–17, (1994).
  9. V. E. Goodman, A. A. Karabutov, Laser Optaacoustics (American Institute of Physics, New York, 1992).
  10. J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
    [CrossRef]
  11. A. J. Welch, M. C. van Gemert, Tissue Optical Properties and Laser-Tissue Interactions (Plenum, New York, 1995).
  12. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26 (12), 2166–2185 (1990).
    [CrossRef]
  13. I. K. Kikoin, Tables of Physical Parameters (Atomizdat, Moscow, 1976), and Handbook of Chemistry and Physics, 54th ed. (CRC Press, Cleveland, Ohio, 1974).
  14. S. A. Goss, R. L. Johnston, F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc. Am. 64 (2), 423–457 (1978).
    [CrossRef]
  15. F. A. Duck, Physical Properties of Tissue (Academic, New York, 1990).
  16. L. H. Wang, S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Sandard C (M.D. Anderson Cancer Center Press, Houston, Texas, 1993).
  17. D. H. Trevena, “Propagation of stress pulses across the interface between two immiscible liquids,” Nature (London) 209, 289–290 (1966).
    [CrossRef]
  18. Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967).
  19. A. L. McKenzie, “Physics of thermal processes in laser-tissue interactions,” Phys. Med. Biol. 35, 1175–1209 (1990).
    [CrossRef] [PubMed]
  20. L. D. Landau, E. M. Lifschitz, Field Theory (Academic, New York, 1974).
  21. Y. H. Berthelot, I. J. Busch-Vishniak, “Laser-induced thermoacoustic radiation,” J. Acoust. Soc. Am. 78 (6), 2074–2082 (1985).
    [CrossRef]
  22. S. L. Jacques, “Simple theory, measurements and rules of thumb for dosimetry during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 100–108 (1989).
    [CrossRef]
  23. M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
    [CrossRef]
  24. A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, L. H. Wang, M. Ostermeyer, F. K. Tittel, “Laser optoacoustic imaging of turbid media: comparison of experimental results and Monte Carlo simulations,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2681, 277–284 (1996).
  25. S. Prahlp, “ANSI C version 1.2 computer code utilizing inverse adding-doubling method for calculation of tissue optical properties,” FTP@odin.mda.uth.tmc.edu as iad12.sit
  26. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, F. K. Tittel, “Radial and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 198–208 (1995).
    [CrossRef]

1994 (1)

A. A. Oraevsky, “A nanosecond acoustic transducer with applications in laser medicine,” IEEE/LEOS Newsletter 8 (1), 6–17, (1994).

1990 (2)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26 (12), 2166–2185 (1990).
[CrossRef]

A. L. McKenzie, “Physics of thermal processes in laser-tissue interactions,” Phys. Med. Biol. 35, 1175–1209 (1990).
[CrossRef] [PubMed]

1988 (1)

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2200 (1988).
[CrossRef]

1987 (2)

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50 (15), 1019–1021 (1987).
[CrossRef]

1986 (2)

M. W. Sigrist, “Laser generated acoustic waves in liquids and solids,” J. Appl. Phys. 60, R83–R121 (1986
[CrossRef]

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

1985 (1)

Y. H. Berthelot, I. J. Busch-Vishniak, “Laser-induced thermoacoustic radiation,” J. Acoust. Soc. Am. 78 (6), 2074–2082 (1985).
[CrossRef]

1978 (1)

S. A. Goss, R. L. Johnston, F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc. Am. 64 (2), 423–457 (1978).
[CrossRef]

1966 (1)

D. H. Trevena, “Propagation of stress pulses across the interface between two immiscible liquids,” Nature (London) 209, 289–290 (1966).
[CrossRef]

1964 (1)

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by Ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

Al-Dhahir, R. K.

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2200 (1988).
[CrossRef]

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50 (15), 1019–1021 (1987).
[CrossRef]

Berthelot, Y. H.

Y. H. Berthelot, I. J. Busch-Vishniak, “Laser-induced thermoacoustic radiation,” J. Acoust. Soc. Am. 78 (6), 2074–2082 (1985).
[CrossRef]

Busch-Vishniak, I. J.

Y. H. Berthelot, I. J. Busch-Vishniak, “Laser-induced thermoacoustic radiation,” J. Acoust. Soc. Am. 78 (6), 2074–2082 (1985).
[CrossRef]

Carome, E. F.

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by Ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26 (12), 2166–2185 (1990).
[CrossRef]

Clark, N. A.

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by Ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

Cross, F. W.

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2200 (1988).
[CrossRef]

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50 (15), 1019–1021 (1987).
[CrossRef]

Duck, F. A.

F. A. Duck, Physical Properties of Tissue (Academic, New York, 1990).

Dunn, F.

S. A. Goss, R. L. Johnston, F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc. Am. 64 (2), 423–457 (1978).
[CrossRef]

Dyer, P. E.

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2200 (1988).
[CrossRef]

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50 (15), 1019–1021 (1987).
[CrossRef]

Esenaliev, R. O.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, L. H. Wang, M. Ostermeyer, F. K. Tittel, “Laser optoacoustic imaging of turbid media: comparison of experimental results and Monte Carlo simulations,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2681, 277–284 (1996).

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, F. K. Tittel, “Radial and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 198–208 (1995).
[CrossRef]

Goodman, V. E.

V. E. Goodman, A. A. Karabutov, Laser Optaacoustics (American Institute of Physics, New York, 1992).

Goss, S. A.

S. A. Goss, R. L. Johnston, F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc. Am. 64 (2), 423–457 (1978).
[CrossRef]

Jacques, S. L.

L. H. Wang, S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Sandard C (M.D. Anderson Cancer Center Press, Houston, Texas, 1993).

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101. (1993).
[CrossRef]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, F. K. Tittel, “Radial and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 198–208 (1995).
[CrossRef]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, L. H. Wang, M. Ostermeyer, F. K. Tittel, “Laser optoacoustic imaging of turbid media: comparison of experimental results and Monte Carlo simulations,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2681, 277–284 (1996).

S. L. Jacques, “Simple theory, measurements and rules of thumb for dosimetry during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 100–108 (1989).
[CrossRef]

Johnston, R. L.

S. A. Goss, R. L. Johnston, F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc. Am. 64 (2), 423–457 (1978).
[CrossRef]

Karabutov, A. A.

V. E. Goodman, A. A. Karabutov, Laser Optaacoustics (American Institute of Physics, New York, 1992).

Kikoin, I. K.

I. K. Kikoin, Tables of Physical Parameters (Atomizdat, Moscow, 1976), and Handbook of Chemistry and Physics, 54th ed. (CRC Press, Cleveland, Ohio, 1974).

Landau, L. D.

L. D. Landau, E. M. Lifschitz, Field Theory (Academic, New York, 1974).

Letokhov, V. S.

V. P. Zarov, V. S. Letokhov, Laser Opto-Acoustic Spectroscopy (Springer-Verlag, New York, 1984).

Lifschitz, E. M.

L. D. Landau, E. M. Lifschitz, Field Theory (Academic, New York, 1974).

MacRobert, A. J.

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50 (15), 1019–1021 (1987).
[CrossRef]

Marijnissen, J. P. A.

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

McKenzie, A. L.

A. L. McKenzie, “Physics of thermal processes in laser-tissue interactions,” Phys. Med. Biol. 35, 1175–1209 (1990).
[CrossRef] [PubMed]

Moeller, C. E.

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by Ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

Oraevsky, A. A.

A. A. Oraevsky, “A nanosecond acoustic transducer with applications in laser medicine,” IEEE/LEOS Newsletter 8 (1), 6–17, (1994).

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101. (1993).
[CrossRef]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, L. H. Wang, M. Ostermeyer, F. K. Tittel, “Laser optoacoustic imaging of turbid media: comparison of experimental results and Monte Carlo simulations,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2681, 277–284 (1996).

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, F. K. Tittel, “Radial and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 198–208 (1995).
[CrossRef]

Ostermeyer, M.

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, L. H. Wang, M. Ostermeyer, F. K. Tittel, “Laser optoacoustic imaging of turbid media: comparison of experimental results and Monte Carlo simulations,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2681, 277–284 (1996).

Patterson, M. S.

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26 (12), 2166–2185 (1990).
[CrossRef]

Raizer, Yu. P.

Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967).

Schwartz, E.

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, “Laser generated acoustic waves in liquids and solids,” J. Appl. Phys. 60, R83–R121 (1986
[CrossRef]

Star, W. M.

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101. (1993).
[CrossRef]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, L. H. Wang, M. Ostermeyer, F. K. Tittel, “Laser optoacoustic imaging of turbid media: comparison of experimental results and Monte Carlo simulations,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2681, 277–284 (1996).

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, F. K. Tittel, “Radial and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 198–208 (1995).
[CrossRef]

Trevena, D. H.

D. H. Trevena, “Propagation of stress pulses across the interface between two immiscible liquids,” Nature (London) 209, 289–290 (1966).
[CrossRef]

van Gemert, M. C.

A. J. Welch, M. C. van Gemert, Tissue Optical Properties and Laser-Tissue Interactions (Plenum, New York, 1995).

Wang, L. H.

L. H. Wang, S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Sandard C (M.D. Anderson Cancer Center Press, Houston, Texas, 1993).

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, L. H. Wang, M. Ostermeyer, F. K. Tittel, “Laser optoacoustic imaging of turbid media: comparison of experimental results and Monte Carlo simulations,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2681, 277–284 (1996).

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26 (12), 2166–2185 (1990).
[CrossRef]

A. J. Welch, M. C. van Gemert, Tissue Optical Properties and Laser-Tissue Interactions (Plenum, New York, 1995).

Wilson, B. C.

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[CrossRef]

Zarov, V. P.

V. P. Zarov, V. S. Letokhov, Laser Opto-Acoustic Spectroscopy (Springer-Verlag, New York, 1984).

Zel’dovich, Ya. B.

Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967).

Appl. Phys. Lett. (2)

E. F. Carome, N. A. Clark, C. E. Moeller, “Generation of acoustic signals in liquids by Ruby laser-induced thermal stress transients,” Appl. Phys. Lett. 4, 95–97 (1964).
[CrossRef]

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, A. J. MacRobert, “Time-resolved photoacoustic studies of vascular tissue ablation at three laser wavelengths,” Appl. Phys. Lett. 50 (15), 1019–1021 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26 (12), 2166–2185 (1990).
[CrossRef]

IEEE/LEOS Newsletter (1)

A. A. Oraevsky, “A nanosecond acoustic transducer with applications in laser medicine,” IEEE/LEOS Newsletter 8 (1), 6–17, (1994).

J. Acoust. Soc. Am. (2)

S. A. Goss, R. L. Johnston, F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc. Am. 64 (2), 423–457 (1978).
[CrossRef]

Y. H. Berthelot, I. J. Busch-Vishniak, “Laser-induced thermoacoustic radiation,” J. Acoust. Soc. Am. 78 (6), 2074–2082 (1985).
[CrossRef]

J. Appl. Phys. (2)

F. W. Cross, R. K. Al-Dhahir, P. E. Dyer, “Ablative and acoustic response of pulsed UV laser-irradiated vascular tissue in a liquid environment,” J. Appl. Phys. 64, 2194–2200 (1988).
[CrossRef]

M. W. Sigrist, “Laser generated acoustic waves in liquids and solids,” J. Appl. Phys. 60, R83–R121 (1986
[CrossRef]

Lasers Med. Sci. (1)

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

Nature (London) (1)

D. H. Trevena, “Propagation of stress pulses across the interface between two immiscible liquids,” Nature (London) 209, 289–290 (1966).
[CrossRef]

Phys. Med. Biol. (1)

A. L. McKenzie, “Physics of thermal processes in laser-tissue interactions,” Phys. Med. Biol. 35, 1175–1209 (1990).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Other (14)

V. P. Zarov, V. S. Letokhov, Laser Opto-Acoustic Spectroscopy (Springer-Verlag, New York, 1984).

A. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves,” in Laser-Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 86–101. (1993).
[CrossRef]

V. E. Goodman, A. A. Karabutov, Laser Optaacoustics (American Institute of Physics, New York, 1992).

Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967).

F. A. Duck, Physical Properties of Tissue (Academic, New York, 1990).

L. H. Wang, S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-Layered Tissues in Sandard C (M.D. Anderson Cancer Center Press, Houston, Texas, 1993).

A. J. Welch, M. C. van Gemert, Tissue Optical Properties and Laser-Tissue Interactions (Plenum, New York, 1995).

I. K. Kikoin, Tables of Physical Parameters (Atomizdat, Moscow, 1976), and Handbook of Chemistry and Physics, 54th ed. (CRC Press, Cleveland, Ohio, 1974).

L. D. Landau, E. M. Lifschitz, Field Theory (Academic, New York, 1974).

S. L. Jacques, “Simple theory, measurements and rules of thumb for dosimetry during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 100–108 (1989).
[CrossRef]

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the noninvasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[CrossRef]

A. A. Oraevsky, R. O. Esenaliev, S. L. Jacques, L. H. Wang, M. Ostermeyer, F. K. Tittel, “Laser optoacoustic imaging of turbid media: comparison of experimental results and Monte Carlo simulations,” in Laser–Tissue Interaction VIII, S. L. Jacques, ed., Proc. SPIE2681, 277–284 (1996).

S. Prahlp, “ANSI C version 1.2 computer code utilizing inverse adding-doubling method for calculation of tissue optical properties,” FTP@odin.mda.uth.tmc.edu as iad12.sit

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, F. K. Tittel, “Radial and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 198–208 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for laser-induced thermoelastic stress detection. BS, beam splitter.

Fig. 2
Fig. 2

General scheme of acoustic transducer.

Fig. 3
Fig. 3

Sensitivity of the lithium niobate acoustic transducer (WAT-04) as a function of frequency of the pressure waves propagating in the acoustic conductor. Calibration was performed on the basis of differential ultrasonic frequency spectra of a reference signal and a signal detected by a WAT-04 transducer.

Fig. 4
Fig. 4

Profile of an acoustic signal generated by a 14-ns pulse of a Nd:YAG laser at 355 nm in a potassium chromate aqueous solution.(a) The top medium is air that creates a free boundary at the surface of the irradiated medium. (b) The top medium is quartz that creates a rigid boundary at the surface of the irradiated solution.

Fig. 5
Fig. 5

Relative stress amplitude as a function of the confined stress parameterμacsτL in the cases of a free sample boundary and a rigid sample boundary.

Fig. 6
Fig. 6

Diffraction parameter D shown for a 10-mm-thick sample of aqueous potassium chromate as a function of laser beam diameter in the case of low (1-MHz) and high (50-MHz) acoustic frequencies. Ultrasonic frequency of 1 MHz corresponds to the effective optical attenuation of 6.69 cm-1 assuming that the speed of sound equals 1.494 km/s, and consequentlyfs = 50 MHz corresponds to μeff = 334.5cm-1. Experimental points for relative stress amplitude are superimposed with theoretical curves, calculated with Eq. (23).

Fig. 7
Fig. 7

Comparison of the absorption coefficient of K2CrO4 aqueous solutions measured by an acoustic transducer and spectrophotometer.

Fig. 8
Fig. 8

Absorption coefficient of a K2CrO4 aqueous solution measured with an acoustic transducer and determined from the exponential slope compared with that determined from the acoustic signal amplitude.

Fig. 9
Fig. 9

Acoustic signal profile induced by a 14-ns Nd:YAGlaser pulse in a turbid gel. The top medium is quartz that creates a rigid boundary at the surface of irradiated gel colored with potassium chromate and made turbid with polystyrene microspheres.

Tables (1)

Tables Icon

Table 1 Optical Properties of Soft Tissues in vitro Measured at Three Nd:YAG Laser Wavelengthsa

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

Δ P = 1 γ   Δ V V = 1 γ β Δ T = 1 γ   β E abs z ρ C v = β c s 2 C p H μ a = Γ H μ a ,
γ = 1 ρ c s 2 C P C v ,
Γ = 0.0043 + 0.0053 T ,
τ = t - z / c s .
Δ P τ = Γ T μ a H t   for   τ < t ,   z > 0 .
R ac = P ref P o = 1 - ρ c s ρ c s 1 + ρ c s ρ c s ,
I t I i = 4 ρ i c s i ρ t c s t ρ i c s i + ρ t c s t 2 ,
I = P 2 / ρ c s .
T = P t / P i = I t ρ t c s t / I i ρ i c s i 1 / 2 = 2 ρ t c s t ρ i c s i + ρ t c s t .
ξ = RTD Λ S ,
τ sr = δ / c s τ L ,
τ hd = δ 2 / M χ τ L ,
P r z ,   τ = Γ c s μ a E 0   0 τ l L t exp - c s τ - t / δ d t .
P f τ = 1 μ a c s d P r τ d τ .
L t = 1 π   exp - 2 t τ L 2 ,
P r t = Γ E 0 L t .
θ = 1 n ac = λ ac w acs ,
z D = w acs 2 2 λ ac = w L 2 2 λ ac .
f s = c s δ s - 1 .
z D = f s w L 2 2 c s = w L 2 2 δ .
w acz = w L 1 + z z D .
F measured = P o A at D     if   A at < A L P o A L D     if   A at > A L ,
D = A L / A acz = 1 / 1 + z z D 2 = 1 / 1 + z 2 δ w L 2 2 .
A acz = π w acz 2 4 = π w L 2 4 1 + z z D 2 .
P z j = P z i exp - α z j - z i .
Λ = exp - α d ,
P τ = ξ Γ 2 μ a H 0   exp μ a c s τ ,     τ = - z / c s ,
P 0 = Γ μ a H 0 ,     at surface   z = 0 ,
P z = Γ μ a H z = Γ μ a κ H o   exp - μ eff z ,     for   z > 1 / μ eff ,
H 0 = 1 + 7.1 R d H o .
μ a = P 0 5 Γ H 0 = S 0 5 Γ H 0   RTD Λ S = 1.3   cm - 1 .
μ s = μ eff 2 3 μ a - μ a = 93.1   cm - 1 .
μ s = μ eff N / 3 1 + N ,     μ a = μ s / N .

Metrics