Abstract

We present in vivo values for the optical transport coefficients (μa, μs′) of the adult human forearm, calf, and head from 760 to 900 nm measured with time-resolved spectroscopy. The accuracy of the method is tested with tissue-simulating phantoms. We obtain μs′(λ) ≈ 1.1 - (5.1 × 10-4 λ) mm-1 (forearm), 1.6 - (8.9 × 10-4 λ) mm-1 (calf), and 1.45 - (6.5 × 10-4 λ) mm-1 (head), where λ is measured in nanometers. At 800 nm we obtain μa = 0.023 ± 0.004 mm-1 (forearm), 0.017 ± 0.005 mm-1 (calf), and 0.016 ± 0.001 mm-1 (head). Our values differ substantially from published in vitro data. In particular, our transport coefficients for the adult head are substantially lower than previously reported values for adult human cerebral matter and pig skull cortical bone measured in vitro.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jöbsis, “Non-invasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
    [CrossRef] [PubMed]
  2. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet 8515, 1063–1066 (1986).
    [CrossRef]
  3. M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
    [CrossRef]
  4. B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
    [CrossRef] [PubMed]
  5. S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
    [CrossRef]
  6. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging in biologic media,” Science 259, 1463–1466 (1993).
    [CrossRef] [PubMed]
  7. M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–167 (1990).
    [CrossRef]
  8. M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
    [CrossRef]
  9. S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 486–495 (1995).
    [CrossRef]
  10. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Simplified approach to characterize optical properties and blood oxygenation in tissue using continuous near-infrared light,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 496–502 (1995).
    [CrossRef]
  11. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  12. P. van der Zee, “Measurement and modelling of the optical properties of human tissue in the near-infrared,” Ph.D dissertation (University of London, London, 1992).
  13. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
    [CrossRef] [PubMed]
  14. B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical-fiber based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., SPIE Institute SeriesIS06, 219–231 (1990).
  15. G. Yoon, D. N. Ghosh Roy, R. C. Straight, “Coherent backscattering in biological media: measurement and estimation of optical properties,” Appl. Opt. 32, 580–585 (1993).
  16. M. Eddowes, “Coherent backscatter and its use in measuring the optical properties of biological tissues,” Ph.D dissertation (University of London, London, 1995).
  17. J. M. Schmitt, A. Knuttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
    [CrossRef] [PubMed]
  18. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  19. M. Barilli, G. Zaccanti, P. Bruscaglioni, A. Ismaelli, Q. N. Wei, M. Ferrari, “Optical properties of in vivo human skeletal muscle from near infrared picosecond laser pulse,” in Photodynamic Therapy and biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, ed. (Elsevier, New York, 1992), pp. 930–934.
  20. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissue-like phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [CrossRef] [PubMed]
  21. K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
    [CrossRef] [PubMed]
  22. G. Zaccanti, A. Taddeucci, M. Barillli, P. Bruscaglioni, F. Martelli, “Optical properties of biological tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 513–521 (1995).
    [CrossRef]
  23. M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418–425 (1993).
    [CrossRef] [PubMed]
  24. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
    [CrossRef] [PubMed]
  25. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  26. M. Schweiger, “Application of the finite element method in infrared image reconstruction of scattering media,” Ph.D dissertation (University of London, London, 1994).
  27. M. Firbank, M. Hiraoka, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
    [CrossRef] [PubMed]
  28. H. J. van Stavaren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef]
  29. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
    [CrossRef]
  30. Y. Pan, R. Engelhardt, J. Rosperich, G. Hüttmann, R. Birngruber, “Measurement of optical transport coefficients of Intralipid in visible and NIR range,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 353–364 (1994).
  31. J. T. Allardice, A. Mutaz Abulafi, D. G. Webb, N. S. Williams, “Standardization of Intralipid for light scattering in clinical photodynamic therapy,” Lasers Med. Sci. 7, 461–465 (1992).
    [CrossRef]
  32. M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
    [CrossRef]
  33. Numerical Algorithms Group Mk 16, Numerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR UK.
  34. M. Cope, “The development of a near infrared spectroscopy system and its application for non-invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D dissertation (University of London, London, 1991).
  35. H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4, 221–227 (1989).
    [CrossRef]
  36. S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
    [CrossRef] [PubMed]
  37. M. Firbank, M. Schweiger, D. T. Delpy, “Investigation of light piping through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 167–173 (1995).
    [CrossRef]
  38. J. H. Torres, A. J. Welch, I. Çilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14249–257 (1994).
    [CrossRef] [PubMed]
  39. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
    [CrossRef] [PubMed]

1994 (4)

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissue-like phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

J. H. Torres, A. J. Welch, I. Çilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14249–257 (1994).
[CrossRef] [PubMed]

1993 (8)

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging in biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

G. Yoon, D. N. Ghosh Roy, R. C. Straight, “Coherent backscattering in biological media: measurement and estimation of optical properties,” Appl. Opt. 32, 580–585 (1993).

J. M. Schmitt, A. Knuttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[CrossRef] [PubMed]

1992 (2)

1991 (1)

1990 (2)

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–167 (1990).
[CrossRef]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (3)

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4, 221–227 (1989).
[CrossRef]

1987 (1)

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

1986 (3)

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet 8515, 1063–1066 (1986).
[CrossRef]

M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
[CrossRef]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

1977 (1)

F. F. Jöbsis, “Non-invasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef] [PubMed]

Aarnoudse, J. G.

Agostino, R.

M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
[CrossRef]

Allardice, J. T.

J. T. Allardice, A. Mutaz Abulafi, D. G. Webb, N. S. Williams, “Standardization of Intralipid for light scattering in clinical photodynamic therapy,” Lasers Med. Sci. 7, 461–465 (1992).
[CrossRef]

Arridge, S. R.

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

Barilli, M.

M. Barilli, G. Zaccanti, P. Bruscaglioni, A. Ismaelli, Q. N. Wei, M. Ferrari, “Optical properties of in vivo human skeletal muscle from near infrared picosecond laser pulse,” in Photodynamic Therapy and biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, ed. (Elsevier, New York, 1992), pp. 930–934.

Barillli, M.

G. Zaccanti, A. Taddeucci, M. Barillli, P. Bruscaglioni, F. Martelli, “Optical properties of biological tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Benaron, D. A.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging in biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Birngruber, R.

Y. Pan, R. Engelhardt, J. Rosperich, G. Hüttmann, R. Birngruber, “Measurement of optical transport coefficients of Intralipid in visible and NIR range,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 353–364 (1994).

Boas, D. A.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Simplified approach to characterize optical properties and blood oxygenation in tissue using continuous near-infrared light,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 496–502 (1995).
[CrossRef]

Bonner, R. F.

Bruscaglioni, P.

M. Barilli, G. Zaccanti, P. Bruscaglioni, A. Ismaelli, Q. N. Wei, M. Ferrari, “Optical properties of in vivo human skeletal muscle from near infrared picosecond laser pulse,” in Photodynamic Therapy and biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, ed. (Elsevier, New York, 1992), pp. 930–934.

G. Zaccanti, A. Taddeucci, M. Barillli, P. Bruscaglioni, F. Martelli, “Optical properties of biological tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Bucci, G.

M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
[CrossRef]

Chance, B.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Simplified approach to characterize optical properties and blood oxygenation in tissue using continuous near-infrared light,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 496–502 (1995).
[CrossRef]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Çilesiz, I.

J. H. Torres, A. J. Welch, I. Çilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14249–257 (1994).
[CrossRef] [PubMed]

Cope, M.

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet 8515, 1063–1066 (1986).
[CrossRef]

M. Cope, “The development of a near infrared spectroscopy system and its application for non-invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D dissertation (University of London, London, 1991).

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 486–495 (1995).
[CrossRef]

Dassel, A. C. M.

De Marchis, C.

M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
[CrossRef]

de Mul, F. F. M.

Delpy, D. T.

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Hiraoka, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet 8515, 1063–1066 (1986).
[CrossRef]

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 486–495 (1995).
[CrossRef]

M. Firbank, M. Schweiger, D. T. Delpy, “Investigation of light piping through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 167–173 (1995).
[CrossRef]

Eddowes, M.

M. Eddowes, “Coherent backscatter and its use in measuring the optical properties of biological tissues,” Ph.D dissertation (University of London, London, 1995).

Elwell, C. E.

Engelhardt, R.

Y. Pan, R. Engelhardt, J. Rosperich, G. Hüttmann, R. Birngruber, “Measurement of optical transport coefficients of Intralipid in visible and NIR range,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 353–364 (1994).

Essenpreis, M.

Farrell, T. J.

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical-fiber based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., SPIE Institute SeriesIS06, 219–231 (1990).

Feng, T.

Ferrari, M.

M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
[CrossRef]

M. Barilli, G. Zaccanti, P. Bruscaglioni, A. Ismaelli, Q. N. Wei, M. Ferrari, “Optical properties of in vivo human skeletal muscle from near infrared picosecond laser pulse,” in Photodynamic Therapy and biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, ed. (Elsevier, New York, 1992), pp. 930–934.

Firbank, M.

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

M. Firbank, M. Hiraoka, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

M. Firbank, M. Schweiger, D. T. Delpy, “Investigation of light piping through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 167–173 (1995).
[CrossRef]

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Ghosh Roy, D. N.

Giannini, I.

M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
[CrossRef]

Graaff, R.

Haskell, R. C.

Hefetz, Y.

Hiraoka, M.

M. Firbank, M. Hiraoka, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

Hogervorst, W.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4, 221–227 (1989).
[CrossRef]

Hüttmann, G.

Y. Pan, R. Engelhardt, J. Rosperich, G. Hüttmann, R. Birngruber, “Measurement of optical transport coefficients of Intralipid in visible and NIR range,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 353–364 (1994).

Ismaelli, A.

M. Barilli, G. Zaccanti, P. Bruscaglioni, A. Ismaelli, Q. N. Wei, M. Ferrari, “Optical properties of in vivo human skeletal muscle from near infrared picosecond laser pulse,” in Photodynamic Therapy and biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, ed. (Elsevier, New York, 1992), pp. 930–934.

Jacques, S. L.

Jöbsis, F. F.

F. F. Jöbsis, “Non-invasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef] [PubMed]

Kamphorst, W.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4, 221–227 (1989).
[CrossRef]

Kirkpatrick, P.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 486–495 (1995).
[CrossRef]

Knuttel, A.

Koelink, M. H.

Kölzer, J.

Liu, H.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Simplified approach to characterize optical properties and blood oxygenation in tissue using continuous near-infrared light,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 496–502 (1995).
[CrossRef]

Madsen, S. J.

Martelli, F.

G. Zaccanti, A. Taddeucci, M. Barillli, P. Bruscaglioni, F. Martelli, “Optical properties of biological tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Matcher, S. J.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 486–495 (1995).
[CrossRef]

McAdams, M. S.

Mitic, G.

Moes, C. J. M.

Motamedi, M.

J. H. Torres, A. J. Welch, I. Çilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14249–257 (1994).
[CrossRef] [PubMed]

Mutaz Abulafi, A.

J. T. Allardice, A. Mutaz Abulafi, D. G. Webb, N. S. Williams, “Standardization of Intralipid for light scattering in clinical photodynamic therapy,” Lasers Med. Sci. 7, 461–465 (1992).
[CrossRef]

Nahid, K.

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 486–495 (1995).
[CrossRef]

Nicola, A.

M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
[CrossRef]

Nodari, S.

M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
[CrossRef]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Otto, J.

Pan, Y.

Y. Pan, R. Engelhardt, J. Rosperich, G. Hüttmann, R. Birngruber, “Measurement of optical transport coefficients of Intralipid in visible and NIR range,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 353–364 (1994).

Park, Y. D.

Patterson, M. S.

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–167 (1990).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[CrossRef]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical-fiber based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., SPIE Institute SeriesIS06, 219–231 (1990).

Plies, E.

Prahl, S. A.

H. J. van Stavaren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Reynolds, E. O. R.

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet 8515, 1063–1066 (1986).
[CrossRef]

Rosperich, J.

Y. Pan, R. Engelhardt, J. Rosperich, G. Hüttmann, R. Birngruber, “Measurement of optical transport coefficients of Intralipid in visible and NIR range,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 353–364 (1994).

Schmitt, J. M.

Schwartz, E.

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[CrossRef]

Schweiger, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, “Application of the finite element method in infrared image reconstruction of scattering media,” Ph.D dissertation (University of London, London, 1994).

M. Firbank, M. Schweiger, D. T. Delpy, “Investigation of light piping through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 167–173 (1995).
[CrossRef]

Sölkner, G.

Sterenborg, H. J. C. M.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4, 221–227 (1989).
[CrossRef]

Stevenson, D. K.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging in biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Straight, R. C.

Suzuki, K.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Svaasand, L. O.

Taddeucci, A.

G. Zaccanti, A. Taddeucci, M. Barillli, P. Bruscaglioni, F. Martelli, “Optical properties of biological tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Torres, J. H.

J. H. Torres, A. J. Welch, I. Çilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14249–257 (1994).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T.

van der Zee, P.

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

P. van der Zee, “Measurement and modelling of the optical properties of human tissue in the near-infrared,” Ph.D dissertation (University of London, London, 1992).

van Gemert, M. J. C.

H. J. van Stavaren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef]

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4, 221–227 (1989).
[CrossRef]

van Marle, J.

van Stavaren, H. J.

Webb, D. G.

J. T. Allardice, A. Mutaz Abulafi, D. G. Webb, N. S. Williams, “Standardization of Intralipid for light scattering in clinical photodynamic therapy,” Lasers Med. Sci. 7, 461–465 (1992).
[CrossRef]

Wei, Q. N.

M. Barilli, G. Zaccanti, P. Bruscaglioni, A. Ismaelli, Q. N. Wei, M. Ferrari, “Optical properties of in vivo human skeletal muscle from near infrared picosecond laser pulse,” in Photodynamic Therapy and biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, ed. (Elsevier, New York, 1992), pp. 930–934.

Welch, A. J.

J. H. Torres, A. J. Welch, I. Çilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14249–257 (1994).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Williams, N. S.

J. T. Allardice, A. Mutaz Abulafi, D. G. Webb, N. S. Williams, “Standardization of Intralipid for light scattering in clinical photodynamic therapy,” Lasers Med. Sci. 7, 461–465 (1992).
[CrossRef]

Wilson, B. C.

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–167 (1990).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[CrossRef]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical-fiber based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., SPIE Institute SeriesIS06, 219–231 (1990).

Wolbers, J. G.

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4, 221–227 (1989).
[CrossRef]

Wray, S.

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet 8515, 1063–1066 (1986).
[CrossRef]

Wyatt, J. S.

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet 8515, 1063–1066 (1986).
[CrossRef]

Wyman, D. R.

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–167 (1990).
[CrossRef]

Yamashita, Y.

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

Yodh, A. G.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Simplified approach to characterize optical properties and blood oxygenation in tissue using continuous near-infrared light,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 496–502 (1995).
[CrossRef]

Yoon, G.

Zaccanti, G.

M. Barilli, G. Zaccanti, P. Bruscaglioni, A. Ismaelli, Q. N. Wei, M. Ferrari, “Optical properties of in vivo human skeletal muscle from near infrared picosecond laser pulse,” in Photodynamic Therapy and biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, ed. (Elsevier, New York, 1992), pp. 930–934.

G. Zaccanti, A. Taddeucci, M. Barillli, P. Bruscaglioni, F. Martelli, “Optical properties of biological tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

Zhang, Y.

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Simplified approach to characterize optical properties and blood oxygenation in tissue using continuous near-infrared light,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 496–502 (1995).
[CrossRef]

Zijlstra, W. G.

Zinth, W.

Adv. Exp. Med. Biol. (2)

M. Ferrari, C. De Marchis, I. Giannini, A. Nicola, R. Agostino, S. Nodari, G. Bucci, “Cerebral blood volume and haemoglobin oxygen saturation monitoring in neonatal brain by near infrared spectroscopy,” Adv. Exp. Med. Biol. 200, 203–212 (1986).
[CrossRef]

M. Cope, D. T. Delpy, S. Wray, J. S. Wyatt, E. O. R. Reynolds, “A CCD spectrometer to quantitate the concentration of chromophores in living tissue utilising the absorption peak of water at 975 nm,” Adv. Exp. Med. Biol. 247, 33–40 (1989).
[CrossRef]

Appl. Opt. (8)

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

H. J. van Stavaren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, D. T. Delpy, “Spectral dependence of temporal point spread functions in human tissues,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. de Mul, J. G. Aarnoudse, W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435–447 (1993).
[CrossRef] [PubMed]

G. Yoon, D. N. Ghosh Roy, R. C. Straight, “Coherent backscattering in biological media: measurement and estimation of optical properties,” Appl. Opt. 32, 580–585 (1993).

G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissue-like phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knuttel, R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Invest. Radiol. (1)

K. Suzuki, Y. Yamashita, K. Ohta, B. Chance, “Quantitative measurement of optical parameters in the breast using time-resolved spectroscopy,” Invest. Radiol. 29, 410–414 (1994).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Lancet (1)

J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, E. O. R. Reynolds, “Quantitation of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectroscopy,” Lancet 8515, 1063–1066 (1986).
[CrossRef]

Lasers Med. Sci. (3)

M. S. Patterson, B. C. Wilson, D. R. Wyman, “The propagation of optical radiation in tissue. I. Models of radiation transport and their application,” Lasers Med. Sci. 6, 155–167 (1990).
[CrossRef]

H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G. Wolbers, W. Hogervorst, “The spectral dependence of the optical properties of human brain,” Lasers Med. Sci. 4, 221–227 (1989).
[CrossRef]

J. T. Allardice, A. Mutaz Abulafi, D. G. Webb, N. S. Williams, “Standardization of Intralipid for light scattering in clinical photodynamic therapy,” Lasers Med. Sci. 7, 461–465 (1992).
[CrossRef]

Lasers Surg. Med. (1)

J. H. Torres, A. J. Welch, I. Çilesiz, M. Motamedi, “Tissue optical property measurements: overestimation of absorption coefficient with spectrophotometric techniques,” Lasers Surg. Med. 14249–257 (1994).
[CrossRef] [PubMed]

Med. Phys. (2)

S. R. Arridge, M. Schweiger, M. Hiraoka, D. T. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Phys. Med. Biol. (3)

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

M. Firbank, M. Hiraoka, D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650–950 nm,” Phys. Med. Biol. 38, 503–510 (1993).
[CrossRef] [PubMed]

Science (2)

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging in biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

F. F. Jöbsis, “Non-invasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977).
[CrossRef] [PubMed]

Other (14)

S. R. Arridge, P. van der Zee, M. Cope, D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” in Time-Resolved Spectroscopy and Imaging of Tissues, B. Chance, A. Katzir, eds., Proc. SPIE1431, 204–215 (1991).
[CrossRef]

M. S. Patterson, E. Schwartz, B. C. Wilson, “Quantitative reflectance spectrophotometry for the non-invasive measurement of photosensitizer concentration in tissue during photodynamic therapy,” in Photodynamic Therapy: Mechanisms, T. J. Dougherty, ed., Proc. SPIE1065, 115–122 (1989).
[CrossRef]

S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 486–495 (1995).
[CrossRef]

H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, B. Chance, “Simplified approach to characterize optical properties and blood oxygenation in tissue using continuous near-infrared light,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 496–502 (1995).
[CrossRef]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical-fiber based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Applications in Photodynamic Therapy, C. J. Gomer, ed., SPIE Institute SeriesIS06, 219–231 (1990).

M. Eddowes, “Coherent backscatter and its use in measuring the optical properties of biological tissues,” Ph.D dissertation (University of London, London, 1995).

M. Barilli, G. Zaccanti, P. Bruscaglioni, A. Ismaelli, Q. N. Wei, M. Ferrari, “Optical properties of in vivo human skeletal muscle from near infrared picosecond laser pulse,” in Photodynamic Therapy and biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, ed. (Elsevier, New York, 1992), pp. 930–934.

G. Zaccanti, A. Taddeucci, M. Barillli, P. Bruscaglioni, F. Martelli, “Optical properties of biological tissues,” in Optical Tomography: Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 513–521 (1995).
[CrossRef]

P. van der Zee, “Measurement and modelling of the optical properties of human tissue in the near-infrared,” Ph.D dissertation (University of London, London, 1992).

Y. Pan, R. Engelhardt, J. Rosperich, G. Hüttmann, R. Birngruber, “Measurement of optical transport coefficients of Intralipid in visible and NIR range,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 353–364 (1994).

M. Firbank, M. Schweiger, D. T. Delpy, “Investigation of light piping through clear regions of scattering objects,” in Optical Tomography: Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 167–173 (1995).
[CrossRef]

Numerical Algorithms Group Mk 16, Numerical Algorithms Group Ltd, Wilkinson House, Jordan Hill Road, Oxford OX2 8DR UK.

M. Cope, “The development of a near infrared spectroscopy system and its application for non-invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D dissertation (University of London, London, 1991).

M. Schweiger, “Application of the finite element method in infrared image reconstruction of scattering media,” Ph.D dissertation (University of London, London, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustrative tissue TPSF and corresponding reference pulse profile as measured with a Hamamatsu C1385 streak camera and Spectra-Physics Tsunami Ti:Sapphire pulsed laser source.

Fig. 2
Fig. 2

μa(λ) and μs′(λ) measured on an Intralipid-10% and dye phantom. μa(λ) (solid circles) is compared with theory (solid curve) given the known absorption properties of water and the dye. μs′(λ) (scaled by a factor of 1.17) is compared with the data of van Stavaren et al. The wavelength dependence of μs′ for Intralipid-10% measured in this study is in good agreement with van Stavaren et al., but the absolute value is lower by approximately 20%.

Fig. 3
Fig. 3

(a) Same as for Fig. 2 but for measurements on a solid phantom consisting of titanium dioxide particles suspended in a polyester resin and dye mixture. The experimental μs′ (solid circles) values have been scaled by a factor of 1.05 to compare their wavelength dependence with theoretical predictions (solid curve). (b) Comparison of the diffusion theory parameter μeff {= [3µaa + μs′)]0.5} calculated from the μa, μs′ values derived from TPSF fitting (solid circles) and measured directly by the measurement of the rate of change of light attenuation with respect to source–detector spacing (solid curve).

Fig. 4
Fig. 4

Representative fit between a measured tissue TPSF (solid curve) and Eq. (1) (dashed curve) for the human forearm at 800 nm. The resulting fit parameters are μa = 0.025 mm-1 and μs′ = 0.73 mm-1.

Fig. 5
Fig. 5

Results of the μs′ estimation procedure applied to tissue TPSF’s collected on a number of adult volunteers across the wavelength range 760–900 nm. As described in the text, the 800–900-nm results were scaled to match the 760–840-nm data when we performed a linear least-squares fit of the former data set to the latter over the overlap region 800–840 nm. (a) μs′(λ) measured on the forearm of 5 volunteers, (b) μs′(λ) measured on the calf of 11 volunteers, (c) μs′(λ) measured on the head of 7 volunteers.

Fig. 6
Fig. 6

μs′(λ) spectra averaged over all subjects and then normalized to the mean values at 800 nm reported in Table 2.

Fig. 7
Fig. 7

Surface plots showing FEM simulations when we derived μa and μs′ by TPSF fitting in the case of an inhomogeneous (two-layer) circle model. The numbers 1–5 on the x and y axes denote the optical properties used in the inner and outer regions of the model. The z axis denotes where the derived value lies between the inner and outer region values, i.e., 0 implies the value equals the lower of the two, 1.0 that it equals the higher, and 0.5 that it equals the mean of the two. (a) Results for μa; (b) results for μs′.

Fig. 8
Fig. 8

Comparison of a TPSF measured across 43 mm of adult head with three theoretical TPSF’s. The first two TPSF’s were generated with Eq. (1) with the in vitro estimates of the optical properties of (a) pig skull cortical bone and (b) adult human cerebral gray matter plus a contribution for blood. The third TPSF was generated with an FEM model of light propagation in a heterogeneous three-layer head model. This model uses the above in vitro μs′ estimates for bone and gray matter plus an in vitro estimate of μs′ for adult human cerebral white matter.12

Tables (4)

Tables Icon

Table 1 Intersubject Variability of the Wavelength Dependence of Scattering Coefficienta

Tables Icon

Table 2 Mean and Standard Deviations of the Absolute Value of μs′ Measured on the Human Forearm, Intact Head, and Calf at 800 nma

Tables Icon

Table 3 Wavelength Dependence of μs′ for Three Tissue Typesa

Tables Icon

Table 4 Derived Concentrations of Hb and HbO2 (µM)a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Rt=z04πDc3/2t-5/2 exp-ρ2+z024Dctexp-μact,
z=μad-μa1dμa2d-μa1d,

Metrics