Abstract

The ablation of cortical bone by holmium laser radiation is described by experimental values of the ablation rate, the depth of tissue damage, and the tissue temperature. An ablation model is presented on the basis of photon diffusion in a turbid medium. When this model is compared with experimental results for the ablation rate, the penetration depth is determined. The expansion of the laser-induced heat can be explained by a point heat source located in a distance beneath the surface equal to the ablation depth. The accumulation of heat as a function of the repetition rate of the laser leads to a limitation of the repetition rate. In order to avoid traumatic heat accumulation, a maximum repetition rate should not be exceeded.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Nuss, R. L. Fabian, R. Sarkar, C. A. Puliafito, “Infrared laser bone ablation,” Laser Surg. Med. 8, 381–391 (1988).
    [Crossref]
  2. J. T. Walsh, T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Laser Surg. Med. 9, 327–337 (1989).
    [Crossref]
  3. J. S. Nelson, A. Orenstein, L.-H. L. Liaw, M. W. Berns, “Mid-infrared erbium:YAG laser ablation of bone: the effect of laser osteotomy on bone healing,” Laser Surg. Med. 9, 362–374 (1989).
    [Crossref]
  4. J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991).
    [Crossref]
  5. R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Laser Surg. Med. 12, 125–129 (1992).
    [Crossref]
  6. V. Romano, R. Rodriguez, H. J. Altermatt, M. Frenz, H. P. Weber, “Bone microsurgery with IR-lasers: a comparative study of the thermal action at different wavelengths,” in Laser Tissue Interaction with Hard and Soft Tissue, H. J. Albrecht, A. Katzir, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2077, 87–97 (1994).
    [Crossref]
  7. H.-J. Foth, T. G. Barton, K. Hörmann, M. Christ, N. Stasche, “Possibilities and problems of using the holmium laser in ENT,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, A. Katzir, eds., Proc. SPIE2128, 17–22 (1994).
  8. E. Stein, T. Sedlacek, R. L. Fabian, N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Laser Surg. Med. 10, 384–388 (1990).
    [Crossref]
  9. M. H. Niemz, L. Eisenmann, T. Pioch, “Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz,” Schweiz. Monatsschr. Zahnmed. 103, 1252–1256 (1993).
  10. N. S. Nishioka, Y. Domankevitz, “Comparison of tissue ablation with pulsed holmium and thulium lasers,” IEEE J. Quantum Electron. 26, 2271–2275 (1990).
    [Crossref]
  11. N. Hodgson, D. J. Golding, “High power 1.444 µm Nd:YAG laser and its applications,” Laser Optoelektron. 25, 38–47 (1993).
  12. J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Laser Med. Sci. 1, 47–66 (1986).
    [Crossref]
  13. J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Laser Surg. Med. 15, 295–305 (1994).
    [Crossref]
  14. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989).
    [Crossref] [PubMed]
  15. M. J. C. van Gemert, S. L. Jacques, H. J. C. Sterenbourg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
    [Crossref] [PubMed]
  16. W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [Crossref]
  17. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
    [Crossref]
  18. S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
    [Crossref] [PubMed]
  19. T. G. Barton, H.-J. Foth, “Tissue ablation at scattering dominated conditions,” in Photon Propagation in Tissues II, B. Chance, D. A. Benaron, G. J. Mueller, eds., Proc. SPIE2925 (1996).
    [Crossref]
  20. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, Oxford, 1959), Chap. 10, pp. 255–259.
  21. A. L. McKenzie, “Physics of thermal processes in laser–tissue interaction,” Phys. Med. Biol. 35, 1175–1209 (1990).
    [Crossref] [PubMed]
  22. N. P. Furzikov, “Different lasers for angioplasty: thermooptical comparison,” IEEE J. Quantum Electron. 23, 1751–1755 (1987).
    [Crossref]
  23. M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Laser Surg. Med. 9, 405–421 (1989).
    [Crossref]
  24. R. Birngruber, “Thermal modeling in biological tissues,” in Lasers in Biology and Medicine, F. Hillenkamp, R. Pratesi, C. A. Sacchi, eds. (Plenum, New York, 1980), pp. 77–97.
    [Crossref]
  25. F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489–502 (1947).
  26. T. G. Barton, R. Guttenberger, H.-J. Foth, “Effects of simmer current on flash-lamp impedance and their combined influence on the output of the Ho, Cr, Tm:YAG laser,” Appl. Opt. 34, 2004–2011 (1995).
    [Crossref] [PubMed]
  27. T. G. Barton, M. Christ, H.-J. Foth, K. Hörmann, N. Stasche: “Ablation of hard tissue with the holmium laser investigated by a surface profile measurement system and a confocal laser scanning microscope,” in Laser Tissue Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacrétaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2323, 185–195 (1995).
    [Crossref]
  28. A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
    [Crossref] [PubMed]
  29. T. G. Barton, H.-J. Foth, K. Bickelmann, D. Meyer, K. Hörmann, M. Christ, “Charakterisierung der Abtragung von Knochen durch den Holmium-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, Waidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 209–211.
  30. E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption of water for midinfrared radiation,” Laser Surg. Med. 14, 258–268 (1994).
    [Crossref]
  31. F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), Chap. 9, p. 322.
  32. N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Laser Surg. Med. 9, 375–381 (1989).
    [Crossref]
  33. M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
    [Crossref]
  34. A. Charlton, M. R. Dickinson, T. A. King, A. J. Freemont, “Erbium-YAG and holmium-YAG ablation of bone,” Laser Life Sci. 5, 365–373 (1990).
    [Crossref]
  35. M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
    [Crossref]
  36. I. I. H. Chen, S. Saha, “Thermal analysis of the bone surface induced by laser radiation,” Ann. Biomed. Eng. 15, 457–466 (1987).
    [Crossref] [PubMed]
  37. H. F. Bowman, E. G. Cravalho, M. Woods, “Theory, measurement, and application of thermal properties of biomaterials,” Ann. Rev. Biophys. Bioeng. 4, 43–79 (1975).
    [Crossref]
  38. Ref. 31, Chap. 2, p. 28.
  39. N. Quinaux, L. J. Richelle, “X-ray defraction and infrared analysis of bone specific gravity functions in the growing rat,” Isr. J. Med. Sci. 3, 677–690 (1967).
  40. K. Kopitzki, Einführung in die Festkörperphysik (Teubner, Stuttgart, 1986), Chap. 2, pp. 80–84.
  41. M. J. Morley, “Thermal conductivities of muscles, fats, and bones,” J. Food Technol. 1, 303–311 (1966).
    [Crossref]

1995 (1)

1994 (3)

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption of water for midinfrared radiation,” Laser Surg. Med. 14, 258–268 (1994).
[Crossref]

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
[Crossref]

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Laser Surg. Med. 15, 295–305 (1994).
[Crossref]

1993 (4)

N. Hodgson, D. J. Golding, “High power 1.444 µm Nd:YAG laser and its applications,” Laser Optoelektron. 25, 38–47 (1993).

S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
[Crossref] [PubMed]

M. H. Niemz, L. Eisenmann, T. Pioch, “Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz,” Schweiz. Monatsschr. Zahnmed. 103, 1252–1256 (1993).

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

1992 (1)

R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Laser Surg. Med. 12, 125–129 (1992).
[Crossref]

1991 (1)

J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991).
[Crossref]

1990 (6)

E. Stein, T. Sedlacek, R. L. Fabian, N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Laser Surg. Med. 10, 384–388 (1990).
[Crossref]

N. S. Nishioka, Y. Domankevitz, “Comparison of tissue ablation with pulsed holmium and thulium lasers,” IEEE J. Quantum Electron. 26, 2271–2275 (1990).
[Crossref]

A. L. McKenzie, “Physics of thermal processes in laser–tissue interaction,” Phys. Med. Biol. 35, 1175–1209 (1990).
[Crossref] [PubMed]

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[Crossref]

A. Charlton, M. R. Dickinson, T. A. King, A. J. Freemont, “Erbium-YAG and holmium-YAG ablation of bone,” Laser Life Sci. 5, 365–373 (1990).
[Crossref]

1989 (6)

N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Laser Surg. Med. 9, 375–381 (1989).
[Crossref]

M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Laser Surg. Med. 9, 405–421 (1989).
[Crossref]

A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt. 28, 2210–2215 (1989).
[Crossref] [PubMed]

M. J. C. van Gemert, S. L. Jacques, H. J. C. Sterenbourg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[Crossref] [PubMed]

J. T. Walsh, T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Laser Surg. Med. 9, 327–337 (1989).
[Crossref]

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, M. W. Berns, “Mid-infrared erbium:YAG laser ablation of bone: the effect of laser osteotomy on bone healing,” Laser Surg. Med. 9, 362–374 (1989).
[Crossref]

1988 (1)

R. C. Nuss, R. L. Fabian, R. Sarkar, C. A. Puliafito, “Infrared laser bone ablation,” Laser Surg. Med. 8, 381–391 (1988).
[Crossref]

1987 (3)

N. P. Furzikov, “Different lasers for angioplasty: thermooptical comparison,” IEEE J. Quantum Electron. 23, 1751–1755 (1987).
[Crossref]

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

I. I. H. Chen, S. Saha, “Thermal analysis of the bone surface induced by laser radiation,” Ann. Biomed. Eng. 15, 457–466 (1987).
[Crossref] [PubMed]

1986 (1)

J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Laser Med. Sci. 1, 47–66 (1986).
[Crossref]

1975 (1)

H. F. Bowman, E. G. Cravalho, M. Woods, “Theory, measurement, and application of thermal properties of biomaterials,” Ann. Rev. Biophys. Bioeng. 4, 43–79 (1975).
[Crossref]

1967 (1)

N. Quinaux, L. J. Richelle, “X-ray defraction and infrared analysis of bone specific gravity functions in the growing rat,” Isr. J. Med. Sci. 3, 677–690 (1967).

1966 (1)

M. J. Morley, “Thermal conductivities of muscles, fats, and bones,” J. Food Technol. 1, 303–311 (1966).
[Crossref]

1947 (1)

F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489–502 (1947).

Albagli, D.

J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991).
[Crossref]

Altermatt, H. J.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

V. Romano, R. Rodriguez, H. J. Altermatt, M. Frenz, H. P. Weber, “Bone microsurgery with IR-lasers: a comparative study of the thermal action at different wavelengths,” in Laser Tissue Interaction with Hard and Soft Tissue, H. J. Albrecht, A. Katzir, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2077, 87–97 (1994).
[Crossref]

Barton, T. G.

T. G. Barton, R. Guttenberger, H.-J. Foth, “Effects of simmer current on flash-lamp impedance and their combined influence on the output of the Ho, Cr, Tm:YAG laser,” Appl. Opt. 34, 2004–2011 (1995).
[Crossref] [PubMed]

T. G. Barton, H.-J. Foth, “Tissue ablation at scattering dominated conditions,” in Photon Propagation in Tissues II, B. Chance, D. A. Benaron, G. J. Mueller, eds., Proc. SPIE2925 (1996).
[Crossref]

H.-J. Foth, T. G. Barton, K. Hörmann, M. Christ, N. Stasche, “Possibilities and problems of using the holmium laser in ENT,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, A. Katzir, eds., Proc. SPIE2128, 17–22 (1994).

T. G. Barton, M. Christ, H.-J. Foth, K. Hörmann, N. Stasche: “Ablation of hard tissue with the holmium laser investigated by a surface profile measurement system and a confocal laser scanning microscope,” in Laser Tissue Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacrétaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2323, 185–195 (1995).
[Crossref]

T. G. Barton, H.-J. Foth, K. Bickelmann, D. Meyer, K. Hörmann, M. Christ, “Charakterisierung der Abtragung von Knochen durch den Holmium-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, Waidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 209–211.

Beer, R.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
[Crossref]

Berns, M. W.

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, M. W. Berns, “Mid-infrared erbium:YAG laser ablation of bone: the effect of laser osteotomy on bone healing,” Laser Surg. Med. 9, 362–374 (1989).
[Crossref]

Bickelmann, K.

T. G. Barton, H.-J. Foth, K. Bickelmann, D. Meyer, K. Hörmann, M. Christ, “Charakterisierung der Abtragung von Knochen durch den Holmium-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, Waidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 209–211.

Birngruber, R.

R. Birngruber, “Thermal modeling in biological tissues,” in Lasers in Biology and Medicine, F. Hillenkamp, R. Pratesi, C. A. Sacchi, eds. (Plenum, New York, 1980), pp. 77–97.
[Crossref]

Borst, C.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption of water for midinfrared radiation,” Laser Surg. Med. 14, 258–268 (1994).
[Crossref]

Boulnois, J.-L.

J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Laser Med. Sci. 1, 47–66 (1986).
[Crossref]

Bowman, H. F.

H. F. Bowman, E. G. Cravalho, M. Woods, “Theory, measurement, and application of thermal properties of biomaterials,” Ann. Rev. Biophys. Bioeng. 4, 43–79 (1975).
[Crossref]

Bradley, A. B.

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

Britton, M.

J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991).
[Crossref]

Buchelt, M.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
[Crossref]

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, Oxford, 1959), Chap. 10, pp. 255–259.

Charlton, A.

A. Charlton, M. R. Dickinson, T. A. King, A. J. Freemont, “Erbium-YAG and holmium-YAG ablation of bone,” Laser Life Sci. 5, 365–373 (1990).
[Crossref]

Chen, I. I. H.

I. I. H. Chen, S. Saha, “Thermal analysis of the bone surface induced by laser radiation,” Ann. Biomed. Eng. 15, 457–466 (1987).
[Crossref] [PubMed]

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Christ, M.

H.-J. Foth, T. G. Barton, K. Hörmann, M. Christ, N. Stasche, “Possibilities and problems of using the holmium laser in ENT,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, A. Katzir, eds., Proc. SPIE2128, 17–22 (1994).

T. G. Barton, M. Christ, H.-J. Foth, K. Hörmann, N. Stasche: “Ablation of hard tissue with the holmium laser investigated by a surface profile measurement system and a confocal laser scanning microscope,” in Laser Tissue Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacrétaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2323, 185–195 (1995).
[Crossref]

T. G. Barton, H.-J. Foth, K. Bickelmann, D. Meyer, K. Hörmann, M. Christ, “Charakterisierung der Abtragung von Knochen durch den Holmium-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, Waidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 209–211.

Cravalho, E. G.

H. F. Bowman, E. G. Cravalho, M. Woods, “Theory, measurement, and application of thermal properties of biomaterials,” Ann. Rev. Biophys. Bioeng. 4, 43–79 (1975).
[Crossref]

Cummings, J. P.

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Laser Surg. Med. 15, 295–305 (1994).
[Crossref]

Deutsch, T. F.

J. T. Walsh, T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Laser Surg. Med. 9, 327–337 (1989).
[Crossref]

Dickinson, M. R.

A. Charlton, M. R. Dickinson, T. A. King, A. J. Freemont, “Erbium-YAG and holmium-YAG ablation of bone,” Laser Life Sci. 5, 365–373 (1990).
[Crossref]

Domankevitz, Y.

N. S. Nishioka, Y. Domankevitz, “Comparison of tissue ablation with pulsed holmium and thulium lasers,” IEEE J. Quantum Electron. 26, 2271–2275 (1990).
[Crossref]

N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Laser Surg. Med. 9, 375–381 (1989).
[Crossref]

Duck, F. A.

F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), Chap. 9, p. 322.

Eisenmann, L.

M. H. Niemz, L. Eisenmann, T. Pioch, “Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz,” Schweiz. Monatsschr. Zahnmed. 103, 1252–1256 (1993).

Fabian, R. L.

E. Stein, T. Sedlacek, R. L. Fabian, N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Laser Surg. Med. 10, 384–388 (1990).
[Crossref]

R. C. Nuss, R. L. Fabian, R. Sarkar, C. A. Puliafito, “Infrared laser bone ablation,” Laser Surg. Med. 8, 381–391 (1988).
[Crossref]

Feld, M. S.

J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991).
[Crossref]

Forrer, M.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

Foth, H.-J.

T. G. Barton, R. Guttenberger, H.-J. Foth, “Effects of simmer current on flash-lamp impedance and their combined influence on the output of the Ho, Cr, Tm:YAG laser,” Appl. Opt. 34, 2004–2011 (1995).
[Crossref] [PubMed]

T. G. Barton, H.-J. Foth, “Tissue ablation at scattering dominated conditions,” in Photon Propagation in Tissues II, B. Chance, D. A. Benaron, G. J. Mueller, eds., Proc. SPIE2925 (1996).
[Crossref]

T. G. Barton, M. Christ, H.-J. Foth, K. Hörmann, N. Stasche: “Ablation of hard tissue with the holmium laser investigated by a surface profile measurement system and a confocal laser scanning microscope,” in Laser Tissue Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacrétaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2323, 185–195 (1995).
[Crossref]

T. G. Barton, H.-J. Foth, K. Bickelmann, D. Meyer, K. Hörmann, M. Christ, “Charakterisierung der Abtragung von Knochen durch den Holmium-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, Waidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 209–211.

H.-J. Foth, T. G. Barton, K. Hörmann, M. Christ, N. Stasche, “Possibilities and problems of using the holmium laser in ENT,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, A. Katzir, eds., Proc. SPIE2128, 17–22 (1994).

Freemont, A. J.

A. Charlton, M. R. Dickinson, T. A. King, A. J. Freemont, “Erbium-YAG and holmium-YAG ablation of bone,” Laser Life Sci. 5, 365–373 (1990).
[Crossref]

Frenz, M.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

V. Romano, R. Rodriguez, H. J. Altermatt, M. Frenz, H. P. Weber, “Bone microsurgery with IR-lasers: a comparative study of the thermal action at different wavelengths,” in Laser Tissue Interaction with Hard and Soft Tissue, H. J. Albrecht, A. Katzir, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2077, 87–97 (1994).
[Crossref]

Furzikov, N. P.

N. P. Furzikov, “Different lasers for angioplasty: thermooptical comparison,” IEEE J. Quantum Electron. 23, 1751–1755 (1987).
[Crossref]

Ghidoni, J. G.

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

Golding, D. J.

N. Hodgson, D. J. Golding, “High power 1.444 µm Nd:YAG laser and its applications,” Laser Optoelektron. 25, 38–47 (1993).

Guttenberger, R.

Henriques, F. C.

F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489–502 (1947).

Hibst, R.

R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Laser Surg. Med. 12, 125–129 (1992).
[Crossref]

Hodgson, N.

N. Hodgson, D. J. Golding, “High power 1.444 µm Nd:YAG laser and its applications,” Laser Optoelektron. 25, 38–47 (1993).

Hörmann, K.

H.-J. Foth, T. G. Barton, K. Hörmann, M. Christ, N. Stasche, “Possibilities and problems of using the holmium laser in ENT,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, A. Katzir, eds., Proc. SPIE2128, 17–22 (1994).

T. G. Barton, M. Christ, H.-J. Foth, K. Hörmann, N. Stasche: “Ablation of hard tissue with the holmium laser investigated by a surface profile measurement system and a confocal laser scanning microscope,” in Laser Tissue Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacrétaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2323, 185–195 (1995).
[Crossref]

T. G. Barton, H.-J. Foth, K. Bickelmann, D. Meyer, K. Hörmann, M. Christ, “Charakterisierung der Abtragung von Knochen durch den Holmium-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, Waidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 209–211.

Hussein, H.

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

Ishimaru, A.

Istomyn, M.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

Itzkan, I.

J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991).
[Crossref]

Izatt, J. A.

J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991).
[Crossref]

Jacques, S. L.

S. L. Jacques, “Role of tissue optics and pulse duration on tissue effects during high-power laser irradiation,” Appl. Opt. 32, 2447–2454 (1993).
[Crossref] [PubMed]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[Crossref]

M. J. C. van Gemert, S. L. Jacques, H. J. C. Sterenbourg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[Crossref] [PubMed]

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, Oxford, 1959), Chap. 10, pp. 255–259.

Jansen, E. D.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption of water for midinfrared radiation,” Laser Surg. Med. 14, 258–268 (1994).
[Crossref]

Jorge, M. D.

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

Jubas, J. M.

J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991).
[Crossref]

Katterschafka, T.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
[Crossref]

King, T. A.

A. Charlton, M. R. Dickinson, T. A. King, A. J. Freemont, “Erbium-YAG and holmium-YAG ablation of bone,” Laser Life Sci. 5, 365–373 (1990).
[Crossref]

Kiss, H.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
[Crossref]

Konov, V. I.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

Kopitzki, K.

K. Kopitzki, Einführung in die Festkörperphysik (Teubner, Stuttgart, 1986), Chap. 2, pp. 80–84.

Kutschera, H.-P.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
[Crossref]

Lang, S.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
[Crossref]

Liaw, L.-H. L.

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, M. W. Berns, “Mid-infrared erbium:YAG laser ablation of bone: the effect of laser osteotomy on bone healing,” Laser Surg. Med. 9, 362–374 (1989).
[Crossref]

Losert, U.

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
[Crossref]

McKenzie, A. L.

A. L. McKenzie, “Physics of thermal processes in laser–tissue interaction,” Phys. Med. Biol. 35, 1175–1209 (1990).
[Crossref] [PubMed]

Meyer, D.

T. G. Barton, H.-J. Foth, K. Bickelmann, D. Meyer, K. Hörmann, M. Christ, “Charakterisierung der Abtragung von Knochen durch den Holmium-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, Waidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 209–211.

Morley, M. J.

M. J. Morley, “Thermal conductivities of muscles, fats, and bones,” J. Food Technol. 1, 303–311 (1966).
[Crossref]

Motamedi, M.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption of water for midinfrared radiation,” Laser Surg. Med. 14, 258–268 (1994).
[Crossref]

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

Nelson, J. S.

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, M. W. Berns, “Mid-infrared erbium:YAG laser ablation of bone: the effect of laser osteotomy on bone healing,” Laser Surg. Med. 9, 362–374 (1989).
[Crossref]

Niemz, M. H.

M. H. Niemz, L. Eisenmann, T. Pioch, “Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz,” Schweiz. Monatsschr. Zahnmed. 103, 1252–1256 (1993).

Nishioka, N. S.

N. S. Nishioka, Y. Domankevitz, “Comparison of tissue ablation with pulsed holmium and thulium lasers,” IEEE J. Quantum Electron. 26, 2271–2275 (1990).
[Crossref]

E. Stein, T. Sedlacek, R. L. Fabian, N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Laser Surg. Med. 10, 384–388 (1990).
[Crossref]

N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Laser Surg. Med. 9, 375–381 (1989).
[Crossref]

Nuss, R. C.

R. C. Nuss, R. L. Fabian, R. Sarkar, C. A. Puliafito, “Infrared laser bone ablation,” Laser Surg. Med. 8, 381–391 (1988).
[Crossref]

O’Rourke, R. A.

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

Orenstein, A.

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, M. W. Berns, “Mid-infrared erbium:YAG laser ablation of bone: the effect of laser osteotomy on bone healing,” Laser Surg. Med. 9, 362–374 (1989).
[Crossref]

Pearce, J. A.

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

Pioch, T.

M. H. Niemz, L. Eisenmann, T. Pioch, “Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz,” Schweiz. Monatsschr. Zahnmed. 103, 1252–1256 (1993).

Prahl, S. A.

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Puliafito, C. A.

R. C. Nuss, R. L. Fabian, R. Sarkar, C. A. Puliafito, “Infrared laser bone ablation,” Laser Surg. Med. 8, 381–391 (1988).
[Crossref]

Quinaux, N.

N. Quinaux, L. J. Richelle, “X-ray defraction and infrared analysis of bone specific gravity functions in the growing rat,” Isr. J. Med. Sci. 3, 677–690 (1967).

Richelle, L. J.

N. Quinaux, L. J. Richelle, “X-ray defraction and infrared analysis of bone specific gravity functions in the growing rat,” Isr. J. Med. Sci. 3, 677–690 (1967).

Rodriguez, R.

V. Romano, R. Rodriguez, H. J. Altermatt, M. Frenz, H. P. Weber, “Bone microsurgery with IR-lasers: a comparative study of the thermal action at different wavelengths,” in Laser Tissue Interaction with Hard and Soft Tissue, H. J. Albrecht, A. Katzir, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2077, 87–97 (1994).
[Crossref]

Romano, V.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

V. Romano, R. Rodriguez, H. J. Altermatt, M. Frenz, H. P. Weber, “Bone microsurgery with IR-lasers: a comparative study of the thermal action at different wavelengths,” in Laser Tissue Interaction with Hard and Soft Tissue, H. J. Albrecht, A. Katzir, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2077, 87–97 (1994).
[Crossref]

Saha, S.

I. I. H. Chen, S. Saha, “Thermal analysis of the bone surface induced by laser radiation,” Ann. Biomed. Eng. 15, 457–466 (1987).
[Crossref] [PubMed]

Sarkar, R.

R. C. Nuss, R. L. Fabian, R. Sarkar, C. A. Puliafito, “Infrared laser bone ablation,” Laser Surg. Med. 8, 381–391 (1988).
[Crossref]

Sedlacek, T.

E. Stein, T. Sedlacek, R. L. Fabian, N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Laser Surg. Med. 10, 384–388 (1990).
[Crossref]

Silenok, A.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

Star, W. M.

M. J. C. van Gemert, S. L. Jacques, H. J. C. Sterenbourg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[Crossref] [PubMed]

Stasche, N.

H.-J. Foth, T. G. Barton, K. Hörmann, M. Christ, N. Stasche, “Possibilities and problems of using the holmium laser in ENT,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, A. Katzir, eds., Proc. SPIE2128, 17–22 (1994).

T. G. Barton, M. Christ, H.-J. Foth, K. Hörmann, N. Stasche: “Ablation of hard tissue with the holmium laser investigated by a surface profile measurement system and a confocal laser scanning microscope,” in Laser Tissue Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacrétaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2323, 185–195 (1995).
[Crossref]

Stein, E.

E. Stein, T. Sedlacek, R. L. Fabian, N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Laser Surg. Med. 10, 384–388 (1990).
[Crossref]

Sterenbourg, H. J. C.

M. J. C. van Gemert, S. L. Jacques, H. J. C. Sterenbourg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[Crossref] [PubMed]

Torres, J. H.

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

van Gemert, M. J. C.

M. J. C. van Gemert, S. L. Jacques, H. J. C. Sterenbourg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[Crossref] [PubMed]

M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Laser Surg. Med. 9, 405–421 (1989).
[Crossref]

van Leeuwen, T. G.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption of water for midinfrared radiation,” Laser Surg. Med. 14, 258–268 (1994).
[Crossref]

Walsh, J. T.

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Laser Surg. Med. 15, 295–305 (1994).
[Crossref]

J. T. Walsh, T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Laser Surg. Med. 9, 327–337 (1989).
[Crossref]

Weber, H. P.

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

V. Romano, R. Rodriguez, H. J. Altermatt, M. Frenz, H. P. Weber, “Bone microsurgery with IR-lasers: a comparative study of the thermal action at different wavelengths,” in Laser Tissue Interaction with Hard and Soft Tissue, H. J. Albrecht, A. Katzir, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2077, 87–97 (1994).
[Crossref]

Welch, A. J.

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption of water for midinfrared radiation,” Laser Surg. Med. 14, 258–268 (1994).
[Crossref]

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Laser Surg. Med. 9, 405–421 (1989).
[Crossref]

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

Wilson, B. C.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[Crossref]

Woods, M.

H. F. Bowman, E. G. Cravalho, M. Woods, “Theory, measurement, and application of thermal properties of biomaterials,” Ann. Rev. Biophys. Bioeng. 4, 43–79 (1975).
[Crossref]

Ann. Biomed. Eng. (1)

I. I. H. Chen, S. Saha, “Thermal analysis of the bone surface induced by laser radiation,” Ann. Biomed. Eng. 15, 457–466 (1987).
[Crossref] [PubMed]

Ann. Rev. Biophys. Bioeng. (1)

H. F. Bowman, E. G. Cravalho, M. Woods, “Theory, measurement, and application of thermal properties of biomaterials,” Ann. Rev. Biophys. Bioeng. 4, 43–79 (1975).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

M. Forrer, M. Frenz, V. Romano, H. J. Altermatt, H. P. Weber, A. Silenok, M. Istomyn, V. I. Konov, “Bone-ablation mechanism using CO2 lasers of different pulse duration and wavelength,” Appl. Phys. B 56, 104–112 (1993).
[Crossref]

Arch. Pathol. (1)

F. C. Henriques, “Studies of thermal injury,” Arch. Pathol. 43, 489–502 (1947).

Circulation (1)

A. J. Welch, A. B. Bradley, M. D. Jorge, J. H. Torres, M. Motamedi, J. G. Ghidoni, J. A. Pearce, H. Hussein, R. A. O’Rourke, “Laser probe ablation of normal and atherosclerotic human aorta in vitro: a first thermographic and histologic analysis,” Circulation 76, 1353–1363 (1987).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (4)

N. P. Furzikov, “Different lasers for angioplasty: thermooptical comparison,” IEEE J. Quantum Electron. 23, 1751–1755 (1987).
[Crossref]

W.-F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[Crossref]

N. S. Nishioka, Y. Domankevitz, “Comparison of tissue ablation with pulsed holmium and thulium lasers,” IEEE J. Quantum Electron. 26, 2271–2275 (1990).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

M. J. C. van Gemert, S. L. Jacques, H. J. C. Sterenbourg, W. M. Star, “Skin optics,” IEEE Trans. Biomed. Eng. 36, 1146–1154 (1989).
[Crossref] [PubMed]

Isr. J. Med. Sci. (1)

N. Quinaux, L. J. Richelle, “X-ray defraction and infrared analysis of bone specific gravity functions in the growing rat,” Isr. J. Med. Sci. 3, 677–690 (1967).

J. Food Technol. (1)

M. J. Morley, “Thermal conductivities of muscles, fats, and bones,” J. Food Technol. 1, 303–311 (1966).
[Crossref]

Laser Life Sci. (1)

A. Charlton, M. R. Dickinson, T. A. King, A. J. Freemont, “Erbium-YAG and holmium-YAG ablation of bone,” Laser Life Sci. 5, 365–373 (1990).
[Crossref]

Laser Med. Sci. (1)

J.-L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Laser Med. Sci. 1, 47–66 (1986).
[Crossref]

Laser Optoelektron. (1)

N. Hodgson, D. J. Golding, “High power 1.444 µm Nd:YAG laser and its applications,” Laser Optoelektron. 25, 38–47 (1993).

Laser Surg. Med. (11)

E. Stein, T. Sedlacek, R. L. Fabian, N. S. Nishioka, “Acute and chronic effects of bone ablation with a pulsed holmium laser,” Laser Surg. Med. 10, 384–388 (1990).
[Crossref]

R. C. Nuss, R. L. Fabian, R. Sarkar, C. A. Puliafito, “Infrared laser bone ablation,” Laser Surg. Med. 8, 381–391 (1988).
[Crossref]

J. T. Walsh, T. F. Deutsch, “Er:YAG laser ablation of tissue: measurement of ablation rates,” Laser Surg. Med. 9, 327–337 (1989).
[Crossref]

J. S. Nelson, A. Orenstein, L.-H. L. Liaw, M. W. Berns, “Mid-infrared erbium:YAG laser ablation of bone: the effect of laser osteotomy on bone healing,” Laser Surg. Med. 9, 362–374 (1989).
[Crossref]

J. A. Izatt, D. Albagli, M. Britton, J. M. Jubas, I. Itzkan, M. S. Feld, “Wavelength dependence of pulsed laser ablation of calcified tissue,” Laser Surg. Med. 11, 238–249 (1991).
[Crossref]

R. Hibst, “Mechanical effects of erbium:YAG laser bone ablation,” Laser Surg. Med. 12, 125–129 (1992).
[Crossref]

J. T. Walsh, J. P. Cummings, “Effect of the dynamic optical properties of water on midinfrared laser ablation,” Laser Surg. Med. 15, 295–305 (1994).
[Crossref]

M. Buchelt, H.-P. Kutschera, T. Katterschafka, H. Kiss, S. Lang, R. Beer, U. Losert, “Erb:YAG and Hol:YAG laser osteotomy: the effect of laser ablation on bone healing,” Laser Surg. Med. 15, 373–381 (1994).
[Crossref]

E. D. Jansen, T. G. van Leeuwen, M. Motamedi, C. Borst, A. J. Welch, “Temperature dependence of the absorption of water for midinfrared radiation,” Laser Surg. Med. 14, 258–268 (1994).
[Crossref]

M. J. C. van Gemert, A. J. Welch, “Time constants in thermal laser medicine,” Laser Surg. Med. 9, 405–421 (1989).
[Crossref]

N. S. Nishioka, Y. Domankevitz, “Reflectance during pulsed holmium laser irradiation of tissue,” Laser Surg. Med. 9, 375–381 (1989).
[Crossref]

Phys. Med. Biol. (1)

A. L. McKenzie, “Physics of thermal processes in laser–tissue interaction,” Phys. Med. Biol. 35, 1175–1209 (1990).
[Crossref] [PubMed]

Schweiz. Monatsschr. Zahnmed. (1)

M. H. Niemz, L. Eisenmann, T. Pioch, “Vergleich von drei Lasersystemen zur Abtragung von Zahnschmelz,” Schweiz. Monatsschr. Zahnmed. 103, 1252–1256 (1993).

Other (10)

V. Romano, R. Rodriguez, H. J. Altermatt, M. Frenz, H. P. Weber, “Bone microsurgery with IR-lasers: a comparative study of the thermal action at different wavelengths,” in Laser Tissue Interaction with Hard and Soft Tissue, H. J. Albrecht, A. Katzir, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2077, 87–97 (1994).
[Crossref]

H.-J. Foth, T. G. Barton, K. Hörmann, M. Christ, N. Stasche, “Possibilities and problems of using the holmium laser in ENT,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, A. Katzir, eds., Proc. SPIE2128, 17–22 (1994).

T. G. Barton, H.-J. Foth, “Tissue ablation at scattering dominated conditions,” in Photon Propagation in Tissues II, B. Chance, D. A. Benaron, G. J. Mueller, eds., Proc. SPIE2925 (1996).
[Crossref]

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford U. Press, Oxford, 1959), Chap. 10, pp. 255–259.

R. Birngruber, “Thermal modeling in biological tissues,” in Lasers in Biology and Medicine, F. Hillenkamp, R. Pratesi, C. A. Sacchi, eds. (Plenum, New York, 1980), pp. 77–97.
[Crossref]

T. G. Barton, H.-J. Foth, K. Bickelmann, D. Meyer, K. Hörmann, M. Christ, “Charakterisierung der Abtragung von Knochen durch den Holmium-Laser,” in Laser in der Medizin, W. Waidelich, G. Staehler, Waidelich, eds. (Springer-Verlag, Berlin, 1996), pp. 209–211.

T. G. Barton, M. Christ, H.-J. Foth, K. Hörmann, N. Stasche: “Ablation of hard tissue with the holmium laser investigated by a surface profile measurement system and a confocal laser scanning microscope,” in Laser Tissue Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacrétaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. C. van Gemert, eds., Proc. SPIE2323, 185–195 (1995).
[Crossref]

F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), Chap. 9, p. 322.

K. Kopitzki, Einführung in die Festkörperphysik (Teubner, Stuttgart, 1986), Chap. 2, pp. 80–84.

Ref. 31, Chap. 2, p. 28.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for the measurement of the tissue temperature. The spatial and the temporal distributions of the temperature at the back of the specimen were measured by an IR camera. The bone was irradiated at the front side through a fiber in the contact mode.

Fig. 2
Fig. 2

Ablated volume as a function of laser energy. The results of the crater volume are represented for both the surface-profile measurement system Dektak 8000 and the laser scanning microscope Leica TCS 4D.

Fig. 3
Fig. 3

Comparison of experimental results for the average ablation rate and theoretical fit according to Eq. (7).

Fig. 4
Fig. 4

Maximum crater depth as a function of laser intensity. Experimental results and theoretical fit are given according to Eq. (7). The crater depth was determined by the surface-profile measurement system, Dektak 8000, the laser scanning microscope, Leica TCS 4D, and histological sections for which the grinding technique was used.

Fig. 5
Fig. 5

Beam profile of the Gaussian beam Ψ(x, y) compared with the corresponding cylindrical beam profile with the average irradiance Ψave.

Fig. 6
Fig. 6

Energy per unit volume to ablate cortical bone. The results for the Ho:YAG laser are compared with those for the Er:YAG and the CO2 lasers.

Fig. 7
Fig. 7

Comparison of the one- and the three-dimensional analytic solutions of the heat equation with experimental data. The temperature increase that is a result of laser ablation with a single laser pulse is shown. The strength of the heat source Q and the thermal diffusivity D served as fit parameters. The irradiation of bone with a thickness 0.60 mm was carried out at time t = 0 s with a pulse energy of 0.3 J.

Fig. 8
Fig. 8

One-dimensional analytic solutions and experimental results for the laser-induced temperature rise at two values of pulse energy. A monotonic decrease of temperature was measured for a specimen thickness of 0.37 mm. The irradiation of tissue was carried out at time t = 0 s with pulse energies of 0.3 and 0.4 J.

Fig. 9
Fig. 9

Thermal diffusivity as a function of specimen thickness. The thermal diffusivity was determined by the fitting of Eq. (10) to the experimental results of the laser-induced temperature rise, where z0 is the ablation depth.

Fig. 10
Fig. 10

Temporal development of the temperature rise for a 1.3-mm-thick specimen at an exposure of five laser pulses with a repetition rate of 0.4 Hz. The comparison between the experimentally determined and the theoretically calculated temperatures is shown. The theoretical curve was obtained by the addition of the temperature development that was due to point heat sources at the moments the specimen were irradiated (represented by crosses ×). The ablation of tissue is considered.

Fig. 11
Fig. 11

Qualitative representation of the temporal behavior of the temperature increase according to Eq. (10). For a specimen thickness z, the maximum value of temperature Tm is obtained for t = tm. At time t1/2 = 10tm, the temperature has decreased to one half of the maximum value.

Fig. 12
Fig. 12

Theoretical determination of the depth of the thermal damage. For this purpose, the laser-induced temperature is represented as a function of the coordinate z for selected values of time. By a comparison with the threshold temperature T = 62.7 °C and time period t = 300 ms (see Subsection 2.B) a damage with a size of 180 µm is obtained. The temperature was calculated according to Eq. (A8) with the following parameters: Q = 57.8 °C mm, D(z) = 0.4 mm2/s + 0.27 mm/s (z - z0) (Appendix A).

Tables (5)

Tables Icon

Table 1 Maximum Increase of Temperature as a Function of Specimen Thickness

Tables Icon

Table 2 Absorption Coefficients of Cortical Bone for Er:YAG and CO2 Laser Radiation

Tables Icon

Table 3 Strength of Heat Source Q and Thermal Diffusivity D for a Pulse Energy of 0.3 and 0.4 Ja

Tables Icon

Table 4 Thermal Relaxation Time τ and Maximum Repetition Rate fmax [Eqs. (11) and (15b)] for Ho:YAG, and CO2 Lasersa

Tables Icon

Table 5 Depth of the Theoretical Estimated Thermal Damage as a Function of the Specific Time t and the Corresponding Threshold Temperature T According to Equation (19)

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

Ψz=Ψ0k exp-z/δ for z>δ,
k=3+5.1Rd-exp-9.7Rd,
Rdexp-7δμa.
d=δ1+lnk.
kan,i=5a3a-21+21-a/31/2,
Rd=a3a-21-51-a/31/21+21-a/31/2
za=δ lnΨ0kΨth.
Tt=DΔT,
T3Dr, t=Q8πDt3/2exp-r-r02/4Dt.
T1Dz, t=Q2πDt1/2exp-z-z02/4Dt,
τ=l2/4D.
L2=4Dt,
τz=4l2π2D.
tp<τ.
f1/τ.
fc=14.86τ
dN/dt=-ωN,
ω=A exp-ΔE/RT,
Nt=N0exp-0t ωdt.
At exp-ΔE/RT=1.
zav=Vcrater/Acrater,
Ith:=Ψth/k,
q=μboneIthktp.
Ttotalz, t=i=1nT1Dz-z0, t-ti where ti=1/fi-1, i=1n.
t1/2z-z0=10tm=10z-z022D.
t1/2l=10l22D20τ.
fmax=120τ.
λ=13ρcvsΛ,
Dzz-z0+const.
Dz=Dz0+Dz0z-z0.
dTdt=ddzDzdTdz.
dTdt=Dz01+Dz0Dz0z-z0d2Tdz2+Dz0dTdz.
dTdt=Dz0d2Tdz2+Dz0dTdz.
z  z-Dz0t-t0
dTdt=Dz0d2Tdz2.
TA1Dz, t=Q2πDz0t-t01/2×exp-z-z0-Dz0t-t024Dz0t-t0.

Metrics