Abstract

We introduce a projective athermal chart that is produced as a view plane of the perspective projection of a three-dimensional space consisting of two chromatic dispersive powers and the mean thermal dispersive power. In addition, we show a design method for dual-band optical systems with this chart and a design example of a three-lens optical system operating in the 3–5- and 8–12-µm wavelength bands.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Richards, Remote Sensing Digital Image Analysis (Springer-Verlag, Berlin, 1986), pp. 76–78.
  2. M. J. Duggin, “Discrimination of targets from background of similar temperature, using two-channel data in the 3.5–4.1-µm and 11–12-µm regions,” Appl. Opt. 25, 1186–1195 (1986).
    [CrossRef]
  3. M. H. Horman, “Temperature analysis from multispectral infrared data,” Appl. Opt. 15, 2099–2104 (1976).
    [CrossRef] [PubMed]
  4. J. M. Lloyd, Thermal Imaging Systems (Plenum, New York, 1975), pp. 257–267.
  5. T. H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20, 156–160 (1981).
    [CrossRef]
  6. P. J. Rogers, M. Roberts, Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, Chap. 39.
  7. H. A. Buchdahl, “Many-color correction of thin doublets,” Appl. Opt. 24, 1878–1882 (1985).
    [CrossRef] [PubMed]
  8. T. H. Jamieson, “Ultrawide waveband optics,” Opt. Eng. 23, 111–116 (1984).
    [CrossRef]
  9. M. W. McDowell, H. W. Klee, “Achromatization in the 3 to 5 µm spectral region with visible light transmitting materials,” Opt. Eng. 23, 187–192 (1984).
    [CrossRef]
  10. M. Hertzberger, N. R. McClure, “The design of superachromatic lenses,” Appl. Opt. 2, 553–560 (1963).
    [CrossRef]
  11. K. D. Sharma, S. V. Rama Gopal, “Design of achromatic doublets: evaluation of the double-graph technique,” Appl. Opt. 22, 497–500 (1983).
    [CrossRef] [PubMed]
  12. P. N. Robb, “Selection of optical glasses. 1: Two materials,” Appl. Opt. 24, 1864–1877 (1985).
    [CrossRef] [PubMed]
  13. B. Tatian, “Glass chart for analyzing secondary color correction,” Appl. Opt. 24, 544–550 (1985).
    [CrossRef] [PubMed]
  14. M. O. Lidwell, “Achromatism of lenses for thermal IR,” in Optical Systems Engineering IV, P. R. Yoder, ed., Proc. SPIE518, 73–80 (1984).
    [CrossRef]
  15. P. J. Rogers, “Athermalization of IR optical systems,” in Infrared Optical Design and Fabrication, R. Hartmann, W. J. Smith, eds. (SPIE, Bellingham, Wash., 1991), Vol. CR38, pp. 69–94.
  16. P. J. Rogers, “Optics in hostile environments,” in Specification and Measurement of Optical Systems, L. R. Baker, ed., Proc. SPIE1781, 36–48 (1992).
    [CrossRef]
  17. M. Roberts, “Athermalization of infrared optics,” in Recent Trends in Optical Systems Design and Computer Lens Design Workshop II, R. E. Fischer, R. C. Juergens, eds., Proc. SPIE1049, 72–81 (1989).
    [CrossRef]
  18. V. Povey, “Athermalization techniques in infrared systems,” in Optical System Design, Analysis, Production for Advanced Technology Systems, R. E. Fischer, P. J. Rogers, eds., Proc. SPIE655, 142–153 (1986).
    [CrossRef]
  19. R. C. Gibbons, “Athermal infrared optics,” in Proceedings of IRIS Specialty Group on IR Imaging, (1976), p. 71.
  20. L. Rayces, L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” in 1990 International Lens Design Conference, G. N. Lawrence, ed., Proc. SPIE1354, 752–759 (1990).
    [CrossRef]
  21. Y. Tamagawa, S. Wakabayashi, T. Tajime, T. Hashimoto, “Multilens system design with an athermal chart,” Appl. Opt. 33, 8009–8013 (1994).
    [CrossRef] [PubMed]
  22. Electro-Optic Materials (Eagle-Pitcher Industries Inc., Quapaw, Okla.).
  23. Raytran Infrared Materials (Raytheon Company, Burlington, Mass.).
  24. Manufacture of IR Materials (Amorphous Materials Inc., Garland, Tex.).
  25. W. M. Newman, R. F. Sproull, Principles of Interactive Computer Graphics (McGraw-Hill, New York, 1981), pp. 333–366.
  26. A. Watt, 3D Computer Graphics (Addison-Wesley, Wokingham, UK, 1993), pp. 59–75.

1994 (1)

1986 (1)

1985 (3)

1984 (2)

T. H. Jamieson, “Ultrawide waveband optics,” Opt. Eng. 23, 111–116 (1984).
[CrossRef]

M. W. McDowell, H. W. Klee, “Achromatization in the 3 to 5 µm spectral region with visible light transmitting materials,” Opt. Eng. 23, 187–192 (1984).
[CrossRef]

1983 (1)

1981 (1)

T. H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20, 156–160 (1981).
[CrossRef]

1976 (1)

1963 (1)

Buchdahl, H. A.

Duggin, M. J.

Gibbons, R. C.

R. C. Gibbons, “Athermal infrared optics,” in Proceedings of IRIS Specialty Group on IR Imaging, (1976), p. 71.

Hashimoto, T.

Hertzberger, M.

Horman, M. H.

Jamieson, T. H.

T. H. Jamieson, “Ultrawide waveband optics,” Opt. Eng. 23, 111–116 (1984).
[CrossRef]

T. H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20, 156–160 (1981).
[CrossRef]

Klee, H. W.

M. W. McDowell, H. W. Klee, “Achromatization in the 3 to 5 µm spectral region with visible light transmitting materials,” Opt. Eng. 23, 187–192 (1984).
[CrossRef]

Lebich, L.

L. Rayces, L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” in 1990 International Lens Design Conference, G. N. Lawrence, ed., Proc. SPIE1354, 752–759 (1990).
[CrossRef]

Lidwell, M. O.

M. O. Lidwell, “Achromatism of lenses for thermal IR,” in Optical Systems Engineering IV, P. R. Yoder, ed., Proc. SPIE518, 73–80 (1984).
[CrossRef]

Lloyd, J. M.

J. M. Lloyd, Thermal Imaging Systems (Plenum, New York, 1975), pp. 257–267.

McClure, N. R.

McDowell, M. W.

M. W. McDowell, H. W. Klee, “Achromatization in the 3 to 5 µm spectral region with visible light transmitting materials,” Opt. Eng. 23, 187–192 (1984).
[CrossRef]

Newman, W. M.

W. M. Newman, R. F. Sproull, Principles of Interactive Computer Graphics (McGraw-Hill, New York, 1981), pp. 333–366.

Povey, V.

V. Povey, “Athermalization techniques in infrared systems,” in Optical System Design, Analysis, Production for Advanced Technology Systems, R. E. Fischer, P. J. Rogers, eds., Proc. SPIE655, 142–153 (1986).
[CrossRef]

Rama Gopal, S. V.

Rayces, L.

L. Rayces, L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” in 1990 International Lens Design Conference, G. N. Lawrence, ed., Proc. SPIE1354, 752–759 (1990).
[CrossRef]

Richards, J. A.

J. A. Richards, Remote Sensing Digital Image Analysis (Springer-Verlag, Berlin, 1986), pp. 76–78.

Robb, P. N.

Roberts, M.

P. J. Rogers, M. Roberts, Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, Chap. 39.

M. Roberts, “Athermalization of infrared optics,” in Recent Trends in Optical Systems Design and Computer Lens Design Workshop II, R. E. Fischer, R. C. Juergens, eds., Proc. SPIE1049, 72–81 (1989).
[CrossRef]

Rogers, P. J.

P. J. Rogers, “Athermalization of IR optical systems,” in Infrared Optical Design and Fabrication, R. Hartmann, W. J. Smith, eds. (SPIE, Bellingham, Wash., 1991), Vol. CR38, pp. 69–94.

P. J. Rogers, “Optics in hostile environments,” in Specification and Measurement of Optical Systems, L. R. Baker, ed., Proc. SPIE1781, 36–48 (1992).
[CrossRef]

P. J. Rogers, M. Roberts, Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, Chap. 39.

Sharma, K. D.

Sproull, R. F.

W. M. Newman, R. F. Sproull, Principles of Interactive Computer Graphics (McGraw-Hill, New York, 1981), pp. 333–366.

Tajime, T.

Tamagawa, Y.

Tatian, B.

Wakabayashi, S.

Watt, A.

A. Watt, 3D Computer Graphics (Addison-Wesley, Wokingham, UK, 1993), pp. 59–75.

Appl. Opt. (8)

Opt. Eng. (3)

T. H. Jamieson, “Ultrawide waveband optics,” Opt. Eng. 23, 111–116 (1984).
[CrossRef]

M. W. McDowell, H. W. Klee, “Achromatization in the 3 to 5 µm spectral region with visible light transmitting materials,” Opt. Eng. 23, 187–192 (1984).
[CrossRef]

T. H. Jamieson, “Thermal effects in optical systems,” Opt. Eng. 20, 156–160 (1981).
[CrossRef]

Other (15)

P. J. Rogers, M. Roberts, Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 1, Chap. 39.

J. M. Lloyd, Thermal Imaging Systems (Plenum, New York, 1975), pp. 257–267.

Electro-Optic Materials (Eagle-Pitcher Industries Inc., Quapaw, Okla.).

Raytran Infrared Materials (Raytheon Company, Burlington, Mass.).

Manufacture of IR Materials (Amorphous Materials Inc., Garland, Tex.).

W. M. Newman, R. F. Sproull, Principles of Interactive Computer Graphics (McGraw-Hill, New York, 1981), pp. 333–366.

A. Watt, 3D Computer Graphics (Addison-Wesley, Wokingham, UK, 1993), pp. 59–75.

M. O. Lidwell, “Achromatism of lenses for thermal IR,” in Optical Systems Engineering IV, P. R. Yoder, ed., Proc. SPIE518, 73–80 (1984).
[CrossRef]

P. J. Rogers, “Athermalization of IR optical systems,” in Infrared Optical Design and Fabrication, R. Hartmann, W. J. Smith, eds. (SPIE, Bellingham, Wash., 1991), Vol. CR38, pp. 69–94.

P. J. Rogers, “Optics in hostile environments,” in Specification and Measurement of Optical Systems, L. R. Baker, ed., Proc. SPIE1781, 36–48 (1992).
[CrossRef]

M. Roberts, “Athermalization of infrared optics,” in Recent Trends in Optical Systems Design and Computer Lens Design Workshop II, R. E. Fischer, R. C. Juergens, eds., Proc. SPIE1049, 72–81 (1989).
[CrossRef]

V. Povey, “Athermalization techniques in infrared systems,” in Optical System Design, Analysis, Production for Advanced Technology Systems, R. E. Fischer, P. J. Rogers, eds., Proc. SPIE655, 142–153 (1986).
[CrossRef]

R. C. Gibbons, “Athermal infrared optics,” in Proceedings of IRIS Specialty Group on IR Imaging, (1976), p. 71.

L. Rayces, L. Lebich, “Thermal compensation of infrared achromatic objectives with three optical materials,” in 1990 International Lens Design Conference, G. N. Lawrence, ed., Proc. SPIE1354, 752–759 (1990).
[CrossRef]

J. A. Richards, Remote Sensing Digital Image Analysis (Springer-Verlag, Berlin, 1986), pp. 76–78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Three-dimensional athermal chart.

Fig. 2
Fig. 2

Perspective projection in a three-dimensional athermal chart.

Fig. 3
Fig. 3

Example of a projective athermal chart.

Fig. 4
Fig. 4

Projective athermal chart for an equivalent single lens composed of two thin lenses in contact.

Fig. 5
Fig. 5

Condition of an athermalized optical system composed of two thin lenses in contact with different materials on a projective athermal chart.

Fig. 6
Fig. 6

Condition of an athermalized optical system composed of three thin lenses in contact with different materials on a projective athermal chart.

Fig. 7
Fig. 7

Condition of an athermalized optical system composed of four thin lenses in contact with different materials on a projective athermal chart.

Fig. 8
Fig. 8

Projective athermal chart in the 3–5- and 8–12-µm wavelength bands.

Fig. 9
Fig. 9

Configuration of the designed athermalized optical system operating in the 3–5- and 8–12-µm wavelength bands. Materials are ZnS, AMTIR-1, and Ge from the front.

Fig. 10
Fig. 10

Axial transverse ray aberrations of the designed athermalized optical system operating in the 3–5- and 8–12-µm wavelength bands over the temperature range from 0 to 40 °C.

Tables (2)

Tables Icon

Table 1 Chromatic Dispersive Power ω and Thermal Dispersive Power θ of Optical Materials in the 3–5- and the 8–12-µm Regions

Tables Icon

Table 2 Design Parameters of the Optical System

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Power:  i=1kϕi=ϕ,
Achromatism in B1:  i=1kω1iϕi=0,
Achromatism in B2:  i=1kω2iϕi=0,
Athermalism in B1:  i=1kθ1iϕi=-αhϕ,
Athermalism in B2:  i=1kθ2iϕi=-αhϕ,
ωi=-Δϕi/ϕi=-ni/λΔλ/ni-1,
θi=ϕi/T/ϕi=ni/T/ni-1-αi,
Athermalism:  i=1kθ¯iϕi=-αhϕ.
ω1eω2eθ¯e=ϕ1ϕ1+ϕ2ω11ω21θ¯1+ϕ2ϕ1+ϕ2ω12ω22θ¯2.
XY=hx/zy/z+0Dθ¯1-h/z,
xyz=cos φ0-sin φ010sin φ0cos φω1θ¯+αhω2,
sin φ=a/a2+b21/2,  h=1/a2+b21/2.
Xe=cX1+1-cX2,
ΔYe=cΔY1+1-cΔY2,
c=X2-XeX2-X1.
ϕ1/ϕ1+ϕ2>0, ϕ2/ϕ1+ϕ2>0 when 1>c>0,ϕ1/ϕ1+ϕ2<0, ϕ2/ϕ1+ϕ2>0 when c<0.
ϕ1ϕ2=-z2z1=-Dθ¯-ΔY1Dθ¯-ΔY2.
Dθ¯=avθ¯=5.85×10-5/°C,φ=sin-1avω1avω12+avω221/2=0.445 rad,h=avω12+avω221/2=1.60×10-2,

Metrics