Abstract

We have recorded time-resolved transillumination images of solid phantoms with objects embedded that differ in their scattering and absorption coefficients from those of the bulk material, simulating a compressed human breast with a tumor inside. Employing time-correlated single photon counting at rates of up to 1 MHz, we recorded distributions of times of flight of photons at 1369 scan positions within 2.5 min. Several quantities, such as fractional transmittance, first moments, Fourier amplitudes, phase shifts, and frequency-dependent effective transport scattering and absorption coefficients, have been derived from experimental data to form two-dimensional images. By recording such images at a selected total number of photons detected, we have determined the contrast and effective signal-to-noise ratio in each case.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, R. R. Alfano, eds., Photon Migration and Imaging in Random Media and Tissues, Proc. SPIE1888, (1993).
  2. B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media, Proc. SPIE2389 (1995).
  3. For a review see, e.g., R. Berg, S. Andersson-Engels, S. Svanberg, “Time-resolved transillumination imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 397–424.
  4. G. Mitic, J. ölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
    [CrossRef] [PubMed]
  5. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48(3), 34–40 (1995).
  6. M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.
  7. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
    [CrossRef] [PubMed]
  8. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
    [CrossRef] [PubMed]
  9. S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
    [CrossRef] [PubMed]
  10. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
    [CrossRef]
  11. U. Sukowski, F. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
    [CrossRef] [PubMed]
  12. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef] [PubMed]
  13. J. B. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. SPIE1431, 122–135, (1991).
    [CrossRef]
  14. H. Wabnitz, R. Willenbrock, J. Neukammer, U. Sukowski, H. Rinneberg, “Spatial resolution in photon diffusion imaging from measurements of time-resolved transmittance,” in Ref. 1, pp. 48–61.
  15. J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
    [CrossRef] [PubMed]
  16. A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
    [CrossRef] [PubMed]
  17. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    [CrossRef] [PubMed]
  18. H. Rinneberg, “Scattering of laser light in turbid media: optical tomography for medical diagnostics?,” in The Inverse Problem: Symposium Ad Memoriam Hermann von Helmholtz, H. Lübbig, ed. (Akademie Verlag, Berlin, 1995), pp. 107–141.
  19. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
    [CrossRef] [PubMed]

1996

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

U. Sukowski, F. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef] [PubMed]

1995

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48(3), 34–40 (1995).

1994

G. Mitic, J. ölzer, J. Otto, E. Plies, G. Sölkner, W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699–6710 (1994).
[CrossRef] [PubMed]

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

1993

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

1992

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Andersson-Engels, S.

For a review see, e.g., R. Berg, S. Andersson-Engels, S. Svanberg, “Time-resolved transillumination imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 397–424.

Arridge, S. R.

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Berg, R.

For a review see, e.g., R. Berg, S. Andersson-Engels, S. Svanberg, “Time-resolved transillumination imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 397–424.

Boas, D. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Bonner, R. F.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Chance, B.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48(3), 34–40 (1995).

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Cope, M.

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Delpy, D. T.

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Firbank, M.

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Fishkin, J. B.

J. B. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. SPIE1431, 122–135, (1991).
[CrossRef]

Franceschini, M. A.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Gaida, G.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Gratton, E.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. SPIE1431, 122–135, (1991).
[CrossRef]

Grosenick, D.

U. Sukowski, F. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef] [PubMed]

Haida, M.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Hall, D. J.

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

Jess, H.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Kaschke, M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Mantulin, W. W.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. SPIE1431, 122–135, (1991).
[CrossRef]

Mitic, G.

Miwa, M.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Moesta, K. T.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Nioka, S.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Nossal, R.

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

O’Leary, M. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Oda, M.

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

ölzer, J.

Orel, S.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Otto, J.

Patterson, M. S.

M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.

Plies, E.

Pogue, B. W.

M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.

Rinneberg, H.

U. Sukowski, F. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef] [PubMed]

H. Rinneberg, “Scattering of laser light in turbid media: optical tomography for medical diagnostics?,” in The Inverse Problem: Symposium Ad Memoriam Hermann von Helmholtz, H. Lübbig, ed. (Akademie Verlag, Berlin, 1995), pp. 107–141.

Schlag, P. M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Schnall, M.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Schubert, F.

U. Sukowski, F. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef] [PubMed]

Sölkner, G.

Sukowski, U.

U. Sukowski, F. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef] [PubMed]

Svanberg, S.

For a review see, e.g., R. Berg, S. Andersson-Engels, S. Svanberg, “Time-resolved transillumination imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 397–424.

van de Ven, M. J.

J. B. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. SPIE1431, 122–135, (1991).
[CrossRef]

Wilson, B. C.

M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.

Yodh, A.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48(3), 34–40 (1995).

Yodh, A. G.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Zhao, S.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Zinth, W.

Adv. Exp. Med. Biol.

S. Nioka, M. Miwa, S. Orel, M. Schnall, M. Haida, S. Zhao, B. Chance, “Optical imaging of human breast cancer,” Adv. Exp. Med. Biol. 361, 171–179 (1994).
[CrossRef] [PubMed]

Appl. Opt.

Med. Phys.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. Nossal, R. F. Bonner, “Resolution limits for optical transillumination of abnormalities deeply embedded in tissues,” Med. Phys. 21, 185–191 (1994).
[CrossRef] [PubMed]

Phys. Med. Biol.

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

U. Sukowski, F. Schubert, D. Grosenick, H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef] [PubMed]

M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef] [PubMed]

Physics Today

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Physics Today 48(3), 34–40 (1995).

Proc. Natl. Acad. Sci. USA

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Other

H. Rinneberg, “Scattering of laser light in turbid media: optical tomography for medical diagnostics?,” in The Inverse Problem: Symposium Ad Memoriam Hermann von Helmholtz, H. Lübbig, ed. (Akademie Verlag, Berlin, 1995), pp. 107–141.

M. S. Patterson, B. W. Pogue, B. C. Wilson, “Computer simulation and experimental studies of optical imaging with photon density waves,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 513–533.

B. Chance, R. R. Alfano, eds., Photon Migration and Imaging in Random Media and Tissues, Proc. SPIE1888, (1993).

B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media, Proc. SPIE2389 (1995).

For a review see, e.g., R. Berg, S. Andersson-Engels, S. Svanberg, “Time-resolved transillumination imaging,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. J. Müller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds., Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 397–424.

J. B. Fishkin, E. Gratton, M. J. van de Ven, W. W. Mantulin, “Diffusion of intensity modulated near-infrared light in turbid media,” in Time-resolved Spectroscopy and Imaging of Tissues, B. Chance, ed., Proc. SPIE1431, 122–135, (1991).
[CrossRef]

H. Wabnitz, R. Willenbrock, J. Neukammer, U. Sukowski, H. Rinneberg, “Spatial resolution in photon diffusion imaging from measurements of time-resolved transmittance,” in Ref. 1, pp. 48–61.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Diffusely scattering solid phantom with a cubical (1 cm3) inhomogeneity at its center (phantom S) or close to one edge (phantom A), representing a compressed human female breast with a tumor inside. The z axis points in the direction of the laser beam.

Fig. 2
Fig. 2

Experimental setup. TCSPC, time-correlated single photon counting.

Fig. 3
Fig. 3

Distributions N(x, y = 0, τ) of times of flight τ of picosecond laser pulses measured at x = y = 0 (solid curve) and x = xref = -2.5 cm, y = 0 (dashed curve) of the phantom with the cubical insert at its center (phantom S, see Fig. 1). The narrow pulse on the right-hand side represents the response function of the experimental setup without a phantom.

Fig. 4
Fig. 4

(a) Normalized modulus n(x, y, ν), (b) phase shift Δϕ(x, y, ν) versus modulation frequency ν = ω/(2π), obtained by Fourier transformation of the data shown in Fig. 3. The solid curves correspond to position x = y = 0, and the dashed curves correspond to reference position xref = -2.5 cm, yref = 0. For comparison, the limiting (ω → 0) phase shift Δϕ = ω τ̅ is given, where τ̅ denotes the mean time of flight.

Fig. 5
Fig. 5

Transillumination images of phantom S based on normalized fractional transmittance Tnfx, y for fractions f = 1.0, 0.1, and 0.03 (from left to right).

Fig. 6
Fig. 6

Transillumination images of phantom A (cubical insert at x = 0, y = -3.5 cm). Normalized fractional transmittance Tnfx, y is given for f = 1.0, 0.1, and 0.03 (from left to right).

Fig. 7
Fig. 7

Normalized fractional transmittance Tnfx, y=0 of phantom S for fractions f ranging between 0.001 and 1.0.

Fig. 8
Fig. 8

(a) Contrast Cf, (b) SNRbulk, based on normalized fractional transmittance, (c) SNReff (Tnf), derived from data as shown in Figs. 5 and 7 versus fraction f. For comparison, Cf (fNtot)1/2 is shown, assuming photon statistics as the dominant noise contribution [(c), open squares].

Fig. 9
Fig. 9

Linewidth Δx of local variations of normalized fractional transmittance caused by the cubical inhomogeneity (phantom S, see Fig. 7) versus fraction f.

Fig. 10
Fig. 10

Top, transillumination images of phantom S (left) and phantom A (right) based on first moment; bottom, transillumination images of phantom S based on normalized modulus n(x, y, ω) (left) and phase shift Δϕ(x, y, ω) (right) at ν = 300 MHz.

Fig. 11
Fig. 11

Phase shifts Δϕ(x, y = 0, ν) of phantom S versus position x at selected modulation frequencies ν.

Fig. 12
Fig. 12

Contrast C of (a) normalized modulus n, (b) phase shift Δϕ, (c) effective SNR’s, SNReff(n) and SNReff(Δϕ) versus modulation frequency (phantom S). For the definition of contrast C in each case see text.

Fig. 13
Fig. 13

Effective transport scattering coefficients μs,eff(x, y = 0, ν) and absorption coefficients μa, eff(x, y = 0, ν) versus position x at selected modulation frequencies ν (phantom S). Data at 900 MHz correspond to Ntot ≈ 2 × 106 at each scan position, and remaining data correspond to Ntot ≈ 4 × 105.

Fig. 14
Fig. 14

Transillumination image of phantom S based on fractional transmittance Tnf=0.1 (x, y) obtained at 2.5-min total exposure time.

Fig. 15
Fig. 15

(a) Contrast, (b) SNR of the bulk, (c) effective SNR based on fractional transmittance versus fraction f. The open circles and solid curves correspond to Ntot ≈ 8 × 104, and the filled squares and dashed curves correspond to Ntot ≈ 4 × 105 photons detected. Besides the SNRbulk, the limit (fNtot)1/2 that is due to photon statistics is given.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Nˆx, y, ω=-Nx, y, τexp-iωτdτ
0τfNxref, yref, τdτ=f0Nxref, yref, τdτ.
Tnfx, y=0τfNx, y, τdτf0Nxref, yref, τdτ.
Cf=Tnfxc, yc-T¯nfbulkT¯nfbulk,
SNRbulkTnf=T¯nfbulkσbulkT¯nf,
SNReffTnf=Tnfxc, yc-T¯nfbulkσbulkT¯nf
SNReffTnf=CfSNRbulkTnf.
0τ-τ¯nNx, y, τdτ0 Nx, y, τdτ
SNReffA=Axc, yc-A¯bulkσbulkA¯,
ĜslabΓν, μs, μa=Spulse2πn=0z-n-21+ikz-nexp-ikz-n-z+n-21+ikz+nexp-ikz+n,
Rx, y, ν=Nˆx, y, νNˆxref, yref, ν
Rx, y, ν=GˆslabΓν, μs, effx, y, ν, μa,effx, y, νGˆslabΓν, μsxref, yref, μaxref, yref.

Metrics