Abstract

A new approach to three-dimensional tumor localization in turbid media with the use of measurements in a single plane is presented. Optical diffuse photon-density waves are used to probe the turbid medium. Relative amplitudes and phases are measured in the detection plane. Lateral localization is accomplished in the detection plane. With a Fourier optics approach, the scattered wave is reconstructed throughout the volume to provide depth localization. Computer-simulation results that validate this technique are presented. Applications of this technique to multiple tumors and to optical mammography are discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).
  2. A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inv. Probl. 2, 161–183 (1986).
    [CrossRef]
  3. D. S. Dilworth, E. N. Leith, J. L. Lopez, “Imaging absorbing structures within thick diffusing media,” Appl. Opt. 29, 691–698 (1990).
    [CrossRef] [PubMed]
  4. M. Catler, “Transillumination as an aid in the diagnosis of breast lesions. With special reference to its value in cases of bleeding nipple,” Surg. Gynecol. Obstet. 48, 721–729 (1929).
  5. B. Ohlsen, J. Gunderson, D. M. Nilson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–706 (1980).
    [CrossRef]
  6. R. R. Alfano, X. Liang, L. Wang, P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264, 1913–1915 (1994).
    [CrossRef] [PubMed]
  7. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues—a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef]
  8. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  9. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, M. B. Klein, B. A. Wechsler, “Depth-resolved holographic imaging through scattering media by photorefraction,” Opt. Lett. 20, 1331–1333 (1995).
    [CrossRef] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  11. J. A. Izatt, M. R. Hee, G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1993).
    [CrossRef]
  12. J. M. Schmitt, A. Knüttel, A. Gandjbakche, M. A. Eckhaus, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
    [CrossRef] [PubMed]
  13. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [CrossRef] [PubMed]
  14. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
    [CrossRef] [PubMed]
  15. A. G. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).
  16. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
    [CrossRef] [PubMed]
  17. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef] [PubMed]
  18. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
    [CrossRef]
  19. A. Knüttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies by interfering diffusive photon-density waves,” Appl. Opt. 32, 381–389 (1993).
    [CrossRef] [PubMed]
  20. J. M. Schmitt, A. Knüttel, J. R. Knutson, “Interference of diffusive light waves,” J. Opt. Soc. Am. A 9, 1832–1843 (1992).
    [CrossRef] [PubMed]
  21. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Images of inhomogeneous turbid media using diffuse photon density waves,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 106–115.
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), Chap. 3.
  23. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [CrossRef] [PubMed]
  24. See the PMI (Photon Migration Imaging) Code Home Page: URL http://www.lrsm.upenn.edu/pmi/PMI/pmi.html .

1996 (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

1995 (4)

1994 (3)

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knüttel, A. Gandjbakche, M. A. Eckhaus, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

R. R. Alfano, X. Liang, L. Wang, P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

1993 (4)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (2)

D. S. Dilworth, E. N. Leith, J. L. Lopez, “Imaging absorbing structures within thick diffusing media,” Appl. Opt. 29, 691–698 (1990).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

1989 (1)

1986 (1)

A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inv. Probl. 2, 161–183 (1986).
[CrossRef]

1980 (1)

B. Ohlsen, J. Gunderson, D. M. Nilson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–706 (1980).
[CrossRef]

1929 (1)

M. Catler, “Transillumination as an aid in the diagnosis of breast lesions. With special reference to its value in cases of bleeding nipple,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Alfano, R. R.

R. R. Alfano, X. Liang, L. Wang, P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues—a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef]

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Arridge, S. R.

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Barry, N. P.

Beuthan, J.

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Boas, D. A.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Images of inhomogeneous turbid media using diffuse photon density waves,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 106–115.

Catler, M.

M. Catler, “Transillumination as an aid in the diagnosis of breast lesions. With special reference to its value in cases of bleeding nipple,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Cerussi, A. E.

Chance, B.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef] [PubMed]

A. G. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Images of inhomogeneous turbid media using diffuse photon density waves,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 106–115.

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Dainty, J. C.

Das, B. B.

Devaney, A. J.

A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inv. Probl. 2, 161–183 (1986).
[CrossRef]

Dilworth, D. S.

Eckhaus, M. A.

J. M. Schmitt, A. Knüttel, A. Gandjbakche, M. A. Eckhaus, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
[CrossRef] [PubMed]

Fishkin, J. B.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Franceschini, M. A.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

French, P. M. W.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gaida, G.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

Gandjbakche, A.

J. M. Schmitt, A. Knüttel, A. Gandjbakche, M. A. Eckhaus, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), Chap. 3.

Gratton, E.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gunderson, J.

B. Ohlsen, J. Gunderson, D. M. Nilson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–706 (1980).
[CrossRef]

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1993).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ho, P. P.

R. R. Alfano, X. Liang, L. Wang, P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hyde, S. C. W.

Izatt, J. A.

Jess, H.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

Jones, R.

Kaschke, M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Klein, M. B.

Knutson, J. R.

Knüttel, A.

Leith, E. N.

Liang, X.

R. R. Alfano, X. Liang, L. Wang, P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lopez, J. L.

Mantulin, W. W.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

Masters, B. R.

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Moesta, K. T.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

Mueller, G. J.

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Nilson, D. M.

B. Ohlsen, J. Gunderson, D. M. Nilson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–706 (1980).
[CrossRef]

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef] [PubMed]

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Images of inhomogeneous turbid media using diffuse photon density waves,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 106–115.

Ohlsen, B.

B. Ohlsen, J. Gunderson, D. M. Nilson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–706 (1980).
[CrossRef]

Owen, G. M.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Schlag, P. M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

Schmitt, J. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

So, P. T. C.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Svanberg, S.

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

van der Zee, P.

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

Wang, L.

R. R. Alfano, X. Liang, L. Wang, P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

Wechsler, B. A.

Wilson, B. C.

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Yodh, A. G.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef] [PubMed]

A. G. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Images of inhomogeneous turbid media using diffuse photon density waves,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 106–115.

Yoo, K. M.

Appl. Opt. (4)

Inv. Probl. (1)

A. J. Devaney, “Reconstructive tomography with diffracting wavefields,” Inv. Probl. 2, 161–183 (1986).
[CrossRef]

J. Opt. Soc. Am. A (2)

Med. Phys. (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 1–9 (1996).
[CrossRef]

Opt. Lett. (4)

Phys. Med. Biol. (2)

J. M. Schmitt, A. Knüttel, A. Gandjbakche, M. A. Eckhaus, “Optical coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[CrossRef] [PubMed]

Phys. Today (1)

A. G. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48(3), 34–40 (1995).

Proc. Natl. Acad. Sci. USA (1)

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).
[CrossRef] [PubMed]

Science (2)

R. R. Alfano, X. Liang, L. Wang, P. P. Ho, “Time-resolved imaging of translucent droplets in highly scattering turbid media,” Science 264, 1913–1915 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Surg. Gynecol. Obstet. (1)

M. Catler, “Transillumination as an aid in the diagnosis of breast lesions. With special reference to its value in cases of bleeding nipple,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

World J. Surg. (1)

B. Ohlsen, J. Gunderson, D. M. Nilson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–706 (1980).
[CrossRef]

Other (4)

G. J. Mueller, B. Chance, R. R. Alfano, S. R. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. R. Masters, S. Svanberg, P. van der Zee, eds. Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Images of inhomogeneous turbid media using diffuse photon density waves,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed. (Optical Society of America, Washington, D.C., 1994), pp. 106–115.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), Chap. 3.

See the PMI (Photon Migration Imaging) Code Home Page: URL http://www.lrsm.upenn.edu/pmi/PMI/pmi.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the computer simulation. The dashed lines indicate the planes where the photon-density wave is reconstructed.

Fig. 2
Fig. 2

(a) Amplitude, (b) phase of the photon-density wave in the detection plane for a single tumor located in the center of and 2 cm behind the detection plane. This wave is the summation of the homogeneous wave and the scattered wave. The image size is 8 cm × 8 cm.

Fig. 3
Fig. 3

(a) Amplitude, (b) phase of the scattered photon-density wave that correspond to the image in Fig. 2, which are obtained when the homogeneous portion of the detected photon-density wave is subtracted. The image scale is the same as that of Fig. 2.

Fig. 4
Fig. 4

Planar slice of the amplitude of the reconstructed scattered photon-density wave that is due to one tumor. The illumination source is at the bottom of the figure, the detection plane is at the top of the figure perpendicular to the figure, and the slice shown contains the tumor center. The image size is 5 cm × 8 cm.

Fig. 5
Fig. 5

Plots of the amplitude of the reconstructed photon-density waves along a line that contains the tumor centers and the illumination source. The solid curve is for a tumor located 1 cm behind the detection plane (4 cm in front of the illumination source), the dashed–dotted curve is for a tumor 2 cm behind the detection plane, and the dashed curve is for a tumor 3 cm behind the detection plane.

Fig. 6
Fig. 6

(a) Amplitude, (b) phase of the photon-density wave in the detection plane for two tumors as described in the text. This wave is the summation of the homogeneous wave and the scattered wave. The image size is 8 cm × 8 cm.

Fig. 7
Fig. 7

(a) Amplitude, (b) phase of the scattered photon-density wave that correspond to the image in Fig. 6, which are obtained when the homogeneous portion of the detected photon-density wave is subtracted. The image scale is the same as that of Fig. 6.

Fig. 8
Fig. 8

Filtered version of the amplitude image in Fig. 7(a), lowering noise effects at the cost of decreasing resolution. The image size is 8 cm × 8 cm.

Fig. 9
Fig. 9

Planar slice of the amplitude of the reconstructed scattered photon-density wave that is due to two tumors. The illumination source is at the bottom of the figure, the detection plane is at the top of the figure perpendicular to the figure, and the slice shown contains the tumor centers. The image size is 5 cm × 8 cm.

Fig. 10
Fig. 10

Summation of the amplitudes of two photon-density waves in the plane of the tissue volume that contains the illumination source and the two tumor centers. The two photon-density waves correspond to two different illumination–detector configurations. The first configuration has the illumination source at the bottom of the figure and the detection plane at the top of the figure perpendicular to the figure. The second configuration has the location of the detection plane and the illumination source reversed. The image size is 5 cm × 8 cm.

Fig. 11
Fig. 11

Plots of slices of the image in Fig. 10 along lines perpendicular to the detection plane and containing the tumor centers. The solid curve is for the fibroadenoma tumor, and the dashed curve is for the carcinoma tumor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Azfx, fy=A0fx, fyexpizk2-2πfx2-2πfy21/2,
Hzfx, fyAzfx, fyA0fx, fy=expiz-νμa+iωD-2πfx2-2πfy21/2,

Metrics