Abstract

The Green’s function for the diffusion equation is widely used to describe photon transport in turbid media. We have performed aseries of spectroscopy experiments on a number of uniform turbid media with different optical properties (absorption coefficient in the range 0.03–0.14 cm-1, reduced scattering coefficient in the range 5–22 cm-1). Our experiments have been conducted in the frequency domain, where the measured parameters are the dc intensity (Idc), ac amplitude (Iac), and phase (Φ) of the light intensity wave. In an infinite medium, the Green’s function predicts a linear dependence of ln(rIdc) and Φ on the source–detector separation r. Our measurements show that the intercepts of these straight lines predicted by the Green’s function do not agree with the experimental results. To reproduce the experimental results, we have introduced an effective photon source whose spatial extent and source strength depend on the optical properties of the medium. This effective source term has no effect on the slopes of the straight lines predicted by the Green’sfunction at large values of r.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription