Abstract

The temporal profiles of the parallel and perpendicular polarization components of a light pulse backscattered from a scattering medium are different. The depth of penetration into the tissue and depolarization of the backscattered light depend on the scattering and absorption characteristics of the tissue. Based on these facts, a novel technique is demonstrated for noninvasive surface and beneath-the-surface imaging of biological systems.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a brief review of optical imaging techniques see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996) and references therein.
  2. L. Wang, P. P. Ho, G. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  3. J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Three-dimensional reflective image reconstruction through a scattering medium based on time-gated Raman amplification,” Opt. Lett. 19, 1234–1236 (1994).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  5. H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef] [PubMed]
  6. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef] [PubMed]
  7. A. Schmidt, R. Corey, P. Saulnier, “Imaging through random media by use of low-coherence optical heterodyning,” Opt. Lett. 20, 404–406 (1995).
    [CrossRef] [PubMed]
  8. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
    [CrossRef] [PubMed]
  9. B. R. Masters, A. Kriete, J. Kukulies, “Ultraviolet confocal fluorescence microscopy of the in vitro cornea: redox metabolic imaging,” Appl. Opt. 32, 592–596 (1993).
    [CrossRef] [PubMed]
  10. S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
    [CrossRef] [PubMed]
  11. S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
    [CrossRef]
  12. P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
    [CrossRef]
  13. S. L. Jacques, M. Ostermeyer, L. Wang, D. Stephens, “Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 44–56 (1996).
  14. Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological medium having various shapes,” Jpn. J. Appl. Phys. 34, 79–81 (1995).
    [CrossRef]
  15. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, E. K. Osei, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
    [CrossRef] [PubMed]

1996 (3)

For a brief review of optical imaging techniques see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996) and references therein.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

1995 (5)

1994 (1)

1993 (1)

1991 (3)

H. Chen, Y. Chen, D. Dillworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, G. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Alfano, R. R.

For a brief review of optical imaging techniques see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996) and references therein.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, G. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Andersson-Engels, S.

Boas, D. A.

Boppart, S. A.

Bouma, B.

Brezinski, M. E.

Chance, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, H.

Chen, Y.

Corey, R.

Delpy, D. T.

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Demos, S. G.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

Dillworth, D.

Duncan, M. D.

Essenpreis, M.

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gayen, S. K.

For a brief review of optical imaging techniques see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996) and references therein.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Heerdt, A. S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, G. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

S. L. Jacques, M. Ostermeyer, L. Wang, D. Stephens, “Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 44–56 (1996).

Kriete, A.

Kukulies, J.

Leith, E.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G.

L. Wang, P. P. Ho, G. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Lopez, J.

Mahon, R.

Masters, B. R.

Moon, J. A.

O’Leary, M. A.

Osei, E. K.

Ostermeyer, M.

S. L. Jacques, M. Ostermeyer, L. Wang, D. Stephens, “Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 44–56 (1996).

Patterson, M. S.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Reintjes, J.

Saulnier, P.

Savage, H.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

Schantz, S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

Schmidt, A.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stephens, D.

S. L. Jacques, M. Ostermeyer, L. Wang, D. Stephens, “Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 44–56 (1996).

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Tsuchiya, Y.

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological medium having various shapes,” Jpn. J. Appl. Phys. 34, 79–81 (1995).
[CrossRef]

Urakami, T.

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological medium having various shapes,” Jpn. J. Appl. Phys. 34, 79–81 (1995).
[CrossRef]

Valdmanis, J.

van der Zee, P.

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

Wang, L.

L. Wang, P. P. Ho, G. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

S. L. Jacques, M. Ostermeyer, L. Wang, D. Stephens, “Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 44–56 (1996).

Wilson, B. C.

Yodh, A. G.

Zhang, G.

L. Wang, P. P. Ho, G. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Appl. Opt. (2)

Jpn. J. Appl. Phys. (1)

Y. Tsuchiya, T. Urakami, “Photon migration model for turbid biological medium having various shapes,” Jpn. J. Appl. Phys. 34, 79–81 (1995).
[CrossRef]

Opt. Commun. (1)

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

Opt. Lett. (6)

Opt. Photon. News (1)

For a brief review of optical imaging techniques see S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. Photon. News 7(3), 17–22 (1996) and references therein.

Science (2)

L. Wang, P. P. Ho, G. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (2)

P. van der Zee, M. Essenpreis, D. T. Delpy, “Optical properties of brain tissue,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 454–465 (1993).
[CrossRef]

S. L. Jacques, M. Ostermeyer, L. Wang, D. Stephens, “Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, R. R. Anderson, ed., Proc. SPIE2671, 44–56 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement for the (a) time-resolved measurements, (b) polarization optical imaging in the retroreflection geometry. (a) BS, beam splitters; P1 and P2, polarizer and analyzer; L, backscattered light-collecting lens; M, mirror; D, photodiode; F1, 1.2-mm-diameter fiber bundle used for collection of the backscattered light; F2, 110-µm fiber for the reference pulse; SIT, silicon intensified target detector. (b) P1 and P2, polarizer and analyzer; L1, f = 105-mm camera lens; λ/2, half-wave plate.

Fig. 2
Fig. 2

Temporal profiles of the two polarization components of the backscattered light pulses when 1064-nm, 6.5-ps laser pulses were used to illuminate bovine gray matter brain tissue. I(t)// is the parallel polarization component, I(t) is the perpendicular component, and Inorm (t) is the normalized in intensity perpendicular component.

Fig. 3
Fig. 3

Images of a human palm under 580-nm polarized laser illumination: (a) parallel polarization image component, (b) perpendicular polarization image component, (c) image obtained after subtraction of the perpendicular from the parallel image component.

Fig. 4
Fig. 4

Temporal profiles of the perpendicular polarization component of the backscattered pulses normalized to equal peak intensity for two different illumination wavelengths.

Fig. 5
Fig. 5

Images of the perpendicular polarization component of the back of the hand under (a) 570-nm illumination, (b) 600-nm illumination, (c) after subtraction of the 570-nm image from the 600-nm image.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Jμs, μa, t=I0Sμs, texp-μact,
/μaln Jμs, μa, t=-ct,
/μaln Iμs, μa=-ct,
zr, t=VzdVr/ct-r-r/cϕr, t Er, r, t-tdtVdV r/ct-r-r/cϕr, t Er, r, t-tdt,

Metrics