Abstract

A 1-GHz multifrequency, multiwavelength frequency-domain photon migration instrument is used to measure quantitatively the optical absorption (μa) and effective optical scattering (μs) of normal and malignant tissues in a human subject. Large ellipsoidal (∼10-cm major axis, ∼6-cm minor axes) subcutaneous malignant lesions were compared with adjacent normal sites in the abdomen and back. Absorption coefficients recorded at 674, 811, 849, and 956 nm were used to calculate tissue hemoglobin concentration (oxyhemoglobin, deoxyhemoglobin, and total), water concentration, hemoglobin oxygen saturation, and blood volume fraction in vivo. Our results show that the normal and the malignant tissues measured in the patient have clearly resolvable optical and physiological property differences that may be broadly useful in identifying and characterizing tumors.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  2. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 335, 1317–1334 (1990).
    [CrossRef]
  3. T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue,” in OSA Trends in Optics and Photonics, Vol. 3, Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds. (Optical Society of America, Washington, D.C., 1996), pp. 59–61.
  4. B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1996).
  5. S. J. Madsen, E. R. Anderson, R. C. Haskell, B. J. Tromberg, “Portable high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 191934–1936 (1994).
    [CrossRef] [PubMed]
  6. J. B. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [CrossRef] [PubMed]
  7. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
    [CrossRef] [PubMed]
  8. D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1993).
    [CrossRef]
  9. B. J. Tromberg, L. O. Svaasand, T. Tsay, R. C. Haskell, “Properties of photon density waves in multiple-scattering media,” Appl. Opt. 32, 607–616 (1993).
    [CrossRef] [PubMed]
  10. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Optics 34, 1143–1155 (1995).
    [CrossRef]
  11. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode-based technique,” Appl. Opt. 33, 5204–5213 (1994).
    [CrossRef] [PubMed]
  12. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
    [CrossRef] [PubMed]
  13. J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
    [CrossRef]
  14. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  15. F. P. Bolin, L. E. Preuss, R. C. Taylor, R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt. 28, 2297–2303 (1989).
    [CrossRef] [PubMed]
  16. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
    [CrossRef] [PubMed]
  17. G. M. Hale, M. R. Querry, “Optical constants of water in the 200 nm to 200 m wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  18. M. Cope, “The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. dissertation (Department of Medical Physics and Bioengineering, University of London, University College London, UK, 1991).
  19. A. C. Guyton, Textbook of Medical Physiology (Saunders, Philadelphia, Pa., 1991), p. 360.
  20. F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), p. 320.
  21. R. A. Zlotecki, L. T. Baxter, Y. Boucher, R. K. Jain, “Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation,” Microvasc. Res. 50, 429–443 (1995).
    [CrossRef] [PubMed]

1996

B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1996).

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

1995

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Optics 34, 1143–1155 (1995).
[CrossRef]

R. A. Zlotecki, L. T. Baxter, Y. Boucher, R. K. Jain, “Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation,” Microvasc. Res. 50, 429–443 (1995).
[CrossRef] [PubMed]

1994

1993

1992

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

1991

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

1990

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 335, 1317–1334 (1990).
[CrossRef]

1989

1973

Anderson, E. R.

Barbieri, B.

Baxter, L. T.

R. A. Zlotecki, L. T. Baxter, Y. Boucher, R. K. Jain, “Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation,” Microvasc. Res. 50, 429–443 (1995).
[CrossRef] [PubMed]

Berndt, K. W.

Boas, D. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1993).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

Bolin, F. P.

Boucher, Y.

R. A. Zlotecki, L. T. Baxter, Y. Boucher, R. K. Jain, “Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation,” Microvasc. Res. 50, 429–443 (1995).
[CrossRef] [PubMed]

Cerussi, A. E.

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Optics 34, 1143–1155 (1995).
[CrossRef]

Chance, B.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1993).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cope, M.

M. Cope, “The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. dissertation (Department of Medical Physics and Bioengineering, University of London, University College London, UK, 1991).

Duck, F. A.

F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), p. 320.

Fantini, S.

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Optics 34, 1143–1155 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode-based technique,” Appl. Opt. 33, 5204–5213 (1994).
[CrossRef] [PubMed]

Feng, T.-C.

Ference, R. J.

Fishkin, J. B.

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Optics 34, 1143–1155 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode-based technique,” Appl. Opt. 33, 5204–5213 (1994).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

Franceschini, M. A.

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Optics 34, 1143–1155 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode-based technique,” Appl. Opt. 33, 5204–5213 (1994).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 335, 1317–1334 (1990).
[CrossRef]

Gratton, E.

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Optics 34, 1143–1155 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode-based technique,” Appl. Opt. 33, 5204–5213 (1994).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, “Propagation of photon density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

Guyton, A. C.

A. C. Guyton, Textbook of Medical Physiology (Saunders, Philadelphia, Pa., 1991), p. 360.

Hale, G. M.

Haskell, R. C.

Jain, R. K.

R. A. Zlotecki, L. T. Baxter, Y. Boucher, R. K. Jain, “Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation,” Microvasc. Res. 50, 429–443 (1995).
[CrossRef] [PubMed]

Lakowicz, J. R.

Leigh, J.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Madsen, S. J.

B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1996).

S. J. Madsen, E. R. Anderson, R. C. Haskell, B. J. Tromberg, “Portable high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy,” Opt. Lett. 191934–1936 (1994).
[CrossRef] [PubMed]

Maris, M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

McAdams, M. S.

Moulton, J. D.

Nioka, S.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

O’Leary, M. A.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1993).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue,” in OSA Trends in Optics and Photonics, Vol. 3, Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds. (Optical Society of America, Washington, D.C., 1996), pp. 59–61.

Patterson, M. S.

M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 335, 1317–1334 (1990).
[CrossRef]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 335, 1317–1334 (1990).
[CrossRef]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Preuss, L. E.

Querry, M. R.

Sevick, E. M.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue,” in OSA Trends in Optics and Photonics, Vol. 3, Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds. (Optical Society of America, Washington, D.C., 1996), pp. 59–61.

So, P. T. C.

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Optics 34, 1143–1155 (1995).
[CrossRef]

Svaasand, L. O.

Taylor, R. C.

Tromberg, B. J.

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue,” in OSA Trends in Optics and Photonics, Vol. 3, Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds. (Optical Society of America, Washington, D.C., 1996), pp. 59–61.

Tsay, T.

Tsay, T.-T.

vandeVen, M. J.

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wilson, B. C.

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 335, 1317–1334 (1990).
[CrossRef]

Yodh, A. G.

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1993).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

Zlotecki, R. A.

R. A. Zlotecki, L. T. Baxter, Y. Boucher, R. K. Jain, “Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation,” Microvasc. Res. 50, 429–443 (1995).
[CrossRef] [PubMed]

Anal. Biochem.

E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Optics

J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Optics 34, 1143–1155 (1995).
[CrossRef]

Comments Mol. Cell. Biophys.

B. J. Tromberg, R. C. Haskell, S. J. Madsen, L. O. Svaasand, “Characterization of tissue optical properties using photon density waves,” Comments Mol. Cell. Biophys. 8, 359–386 (1996).

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Opt. Soc. Am. A

Microvasc. Res.

R. A. Zlotecki, L. T. Baxter, Y. Boucher, R. K. Jain, “Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: network analysis and mechanistic interpretation,” Microvasc. Res. 50, 429–443 (1995).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 335, 1317–1334 (1990).
[CrossRef]

Phys. Rev. Lett.

M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef] [PubMed]

Phys. Rev. E

D. A. Boas, M. A. O’Leary, B. Chance, A. G. Yodh, “Scattering and wavelength transduction of diffuse photon density waves,” Phys. Rev. E 47, R2999–R3002 (1993).
[CrossRef]

J. B. Fishkin, S. Fantini, M. J. vandeVen, E. Gratton, “Gigahertz photon density waves in a turbid medium: theory and experiments,” Phys. Rev. E 53, 2307–2319 (1996).
[CrossRef]

Other

T. L. Troy, D. L. Page, E. M. Sevick-Muraca, “Optical properties of normal and diseased breast tissue,” in OSA Trends in Optics and Photonics, Vol. 3, Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds. (Optical Society of America, Washington, D.C., 1996), pp. 59–61.

M. Cope, “The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant,” Ph.D. dissertation (Department of Medical Physics and Bioengineering, University of London, University College London, UK, 1991).

A. C. Guyton, Textbook of Medical Physiology (Saunders, Philadelphia, Pa., 1991), p. 360.

F. A. Duck, Physical Properties of Tissue (Academic, London, 1990), p. 320.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Source and image configuration for the extrapolated boundary condition.14 The placement of the image is scaled approximately for an air–medium interface, with the refractive index of the medium equal to that of tissue.15

Fig. 2
Fig. 2

(a) CT scan of the subject’s trunk, which was made one month before our FDPM measurements on the subject. The abdominal tumor is indicated by the right arrow (this right arrow also indicates the source–detector location for the FDPM tumor measurement). The left arrow indicates the source–detector location for the FDPM measurements on the opposite-side normal abdominal tissue. A, anterior; P, posterior; R, right; L, left. Note the distance scale (in centimeters) above the L. (b) Same as (a), except the CT scan shown here yields an image of a different cross section of the subject’s trunk. The back tumor is indicated by the left arrow. The right arrow indicates the source–detector location for the FDPM measurements on the opposite-side normal back tissue.

Fig. 3
Fig. 3

(a) Phase shift versus FDPM data obtained on normal and malignant tissue on the human subject’s abdomen. These phase-shift data were acquired at a distance of 1.7 cm from the light source at a wavelength of 674 nm. (b) Same as (a), except the source wavelength was 811 nm. (c) Same as (a), except the source wavelength was 849 nm. (d) Same as (a), except the source wavelength was 956 nm.

Fig. 4
Fig. 4

(a) Absolute absorption coefficient μa versus source wavelength obtained for normal and malignant tissue on the human subject’s abdomen. The μa values were extracted from best fits of Eq. (1) to the abdomen phase shift versus modulation frequency data (shown in Fig. 3). The source–detector separation was 1.7 cm. (b) Reduced scattering coefficient μs versus source wavelength obtained for normal and malignant tissue on the human subject’s abdomen. The μs values were extracted from best fits of Eq. (1) to the abdomen phase shift versus modulation frequency data (shown in Fig. 3). The source–detector separation was 1.7 cm. (c) Same as (a), except that the μa values were obtained for normal and tumor tissue on the subject’s back. The source–detector separation was 2.2 cm for these measurements. (d) Same as (b), except that the μs values were obtained for normal and tumor tissue on the subject’s back. The source–detector separation was 2.2 cm for these measurements.

Fig. 5
Fig. 5

(a) Hb concentrations (deoxyhemoglobin, oxyhemoglobin, and total) for normal and tumor locations on a human abdomen that are calculated from wavelength-dependent μa values [refer to matrix Eqs. (11) and (12) for calculation method], (b) H2O concentrations for normal and tumor locations on human abdomen that are calculated from wavelength-dependent μa values [refer to matrix Eqs. (11) and (12) for calculation method].

Tables (3)

Tables Icon

Table 1 Summary of the Optical Parameters μa and μs Extracted from the Best Fits to the Phase-Shift Data Acquired from the Human Subject’s Normal Abdomen and Tumor Abdomen

Tables Icon

Table 2 Summary of the Optical Parameters μa and μs Extracted from the Best Fits to the Phase-Shift Data Acquired from the Human Subject’s Normal Back and Tumor Backa

Tables Icon

Table 3 Summary of Physiological Parameters for Normal and Tumor Locations on a Human Abdomen and Back Calculated from Wavelength-Dependent Optical Absorption Coefficients given in Tables 1 and 2a

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Φμa, μs, ρ, ω=kimagro-arctanIMAG/REAL,
REAL=exp-krealroro-coskimagrob-ro×exp-krealrobrob,
IMAG=sinkimagrob-roexp-krealrobrob,
kreal=32μaμs1/21+ωcμa21/2+11/2,
kimag=32μaμs1/21+ωcμa21/2-11/2,
ro=1μs2+ρ21/2, rob=2zb+1μs2+ρ21/2,
zb=1+Reff1-Reff23μs.
Φmeasuredμa, μs, ρ, ω=Φmediumμa, μs, ρ, ω+Φinstrumentω, λ,
Φmediumμa, μs, ρ, ω-Φmediumμa, μs, ρo, ω=Φmeasuredμa, μs, ρ, ω-Φmeasuredμa, μs, ρo, ω,
HbλHb+HbO2λHbO2+H2OλH2O=μaλ
6.5783×1060.7401×1060.07481.8331×1062.1539×1060.4271.5006×1063.0486×1067.24×HbHbO2H2O=μa674μa811μa956.
6.5783×1060.7401×1060.07481.8089×1062.6588×1060.7811.5006×1063.0486×1067.24×HbHbO2H2O=μa674μa849μa956.
Mabcdefghi,
δHb=1detMΔμaλ12ei-hf2+Δμaλ22×bi-hc2+Δμaλ32bf-ec21/2,
δHbO2=1detMΔμaλ12di-fg2+Δμaλ22×ai-gc2+Δμaλ32af-dc21/2,
δH2O=1detMΔμaλ12dh-ge2+Δμaλ22×ah-gb2+Δμaλ32ae-db21/2.

Metrics