Abstract

We proposed to use a distributed feedback structure with a weighted coupling coefficient (W-DFB) in an all-optical bistable device in order to improve on-state transmittance and to reduce threshold intensity. Through numerical calculations, characteristics of the W-DFB structure were discussed compared with those of a conventional DFB structure. The W-DFB optical bistable device exhibits high on-state transmittance and low-threshold input intensity. Fabrication of the W-DFB structure with a periodicity of 169.8 nm is demonstrated on a CdSxSe1−x-doped glass substrate by means of holographic exposure with a double-coated photoresist and reactive ion etching in CHF3.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985), Chap. 7, p. 316.
  2. R. K. Jain, R. C. Lind, “Degenerate four-wave mixing in semiconductor-doped glasses,” J. Opt. Soc. Am. 73, 647–653 (1983).
  3. S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glass,” Appl. Phys. Lett. 46, 801–802 (1985).
  4. J. Yumoto, S. Fukushima, K. Kubodera, “Observation of optical bistability in CdSxSe1−x-doped glasses with 25-psec switching time,” Opt. Lett. 12, 832–834 (1987).
  5. T. J. Cullen, C. N. Ironside, C. T. Seaton, G. I. Stegeman, “Semiconductor-doped glass ion-exchanged waveguides,” Appl. Phys. Lett. 49, 1403–1405 (1986).
  6. K. Shimomura, H. Murata, M. Izutsu, T. Sueta, “Saturable absorption in ion-exchanged CdSxSe1–x-doped glass waveguides,” Jpn. J. Appl. Phys. 32, 840–842 (1993).
  7. T. Mizumoto, Y. Ibusuki, K. Nakatsuhara, Y. Naito, “Waveguide optical bistable device with weighted distributed feedback structure,” in Conference on Lasers and Electro-Optics Europe, Vol. of 1994 Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 354–355.
  8. K. Araki, Y. Naito, “Side-lobes suppression in DBR filters,” Tech. Rep. EMT-82-102 (Institute of Electrical Engineers of Japan, Tokyo, 1982) (in Japanese).
  9. M. Okuda, M. Toyota, K. Onaka, “Saturable optical resonators with distributed Bragg-reflectors,” Opt. Commun. 19, 138–142 (1976).
  10. M. Yamada, K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach,” Appl. Opt. 26, 3474–3478 (1987).
  11. S. Matsui, K. Moriwaki, H. Aritome, S. Namba, S. Shin, S. Suga, “X-ray diffraction gratings for synchrotron radiation spectroscopy: a new fabrication method,” Appl. Opt. 21, 2787–2793 (1982).

1993 (1)

K. Shimomura, H. Murata, M. Izutsu, T. Sueta, “Saturable absorption in ion-exchanged CdSxSe1–x-doped glass waveguides,” Jpn. J. Appl. Phys. 32, 840–842 (1993).

1987 (2)

1986 (1)

T. J. Cullen, C. N. Ironside, C. T. Seaton, G. I. Stegeman, “Semiconductor-doped glass ion-exchanged waveguides,” Appl. Phys. Lett. 49, 1403–1405 (1986).

1985 (1)

S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glass,” Appl. Phys. Lett. 46, 801–802 (1985).

1983 (1)

1982 (1)

1976 (1)

M. Okuda, M. Toyota, K. Onaka, “Saturable optical resonators with distributed Bragg-reflectors,” Opt. Commun. 19, 138–142 (1976).

Araki, K.

K. Araki, Y. Naito, “Side-lobes suppression in DBR filters,” Tech. Rep. EMT-82-102 (Institute of Electrical Engineers of Japan, Tokyo, 1982) (in Japanese).

Aritome, H.

Cullen, T. J.

T. J. Cullen, C. N. Ironside, C. T. Seaton, G. I. Stegeman, “Semiconductor-doped glass ion-exchanged waveguides,” Appl. Phys. Lett. 49, 1403–1405 (1986).

Fortenberry, R.

S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glass,” Appl. Phys. Lett. 46, 801–802 (1985).

Fukushima, S.

Gabel, A.

S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glass,” Appl. Phys. Lett. 46, 801–802 (1985).

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985), Chap. 7, p. 316.

Ibusuki, Y.

T. Mizumoto, Y. Ibusuki, K. Nakatsuhara, Y. Naito, “Waveguide optical bistable device with weighted distributed feedback structure,” in Conference on Lasers and Electro-Optics Europe, Vol. of 1994 Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 354–355.

Ironside, C. N.

T. J. Cullen, C. N. Ironside, C. T. Seaton, G. I. Stegeman, “Semiconductor-doped glass ion-exchanged waveguides,” Appl. Phys. Lett. 49, 1403–1405 (1986).

Izutsu, M.

K. Shimomura, H. Murata, M. Izutsu, T. Sueta, “Saturable absorption in ion-exchanged CdSxSe1–x-doped glass waveguides,” Jpn. J. Appl. Phys. 32, 840–842 (1993).

Jain, R. K.

Karaguleff, C.

S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glass,” Appl. Phys. Lett. 46, 801–802 (1985).

Kubodera, K.

Lind, R. C.

Matsui, S.

Mizumoto, T.

T. Mizumoto, Y. Ibusuki, K. Nakatsuhara, Y. Naito, “Waveguide optical bistable device with weighted distributed feedback structure,” in Conference on Lasers and Electro-Optics Europe, Vol. of 1994 Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 354–355.

Moriwaki, K.

Murata, H.

K. Shimomura, H. Murata, M. Izutsu, T. Sueta, “Saturable absorption in ion-exchanged CdSxSe1–x-doped glass waveguides,” Jpn. J. Appl. Phys. 32, 840–842 (1993).

Naito, Y.

T. Mizumoto, Y. Ibusuki, K. Nakatsuhara, Y. Naito, “Waveguide optical bistable device with weighted distributed feedback structure,” in Conference on Lasers and Electro-Optics Europe, Vol. of 1994 Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 354–355.

K. Araki, Y. Naito, “Side-lobes suppression in DBR filters,” Tech. Rep. EMT-82-102 (Institute of Electrical Engineers of Japan, Tokyo, 1982) (in Japanese).

Nakatsuhara, K.

T. Mizumoto, Y. Ibusuki, K. Nakatsuhara, Y. Naito, “Waveguide optical bistable device with weighted distributed feedback structure,” in Conference on Lasers and Electro-Optics Europe, Vol. of 1994 Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 354–355.

Namba, S.

Okuda, M.

M. Okuda, M. Toyota, K. Onaka, “Saturable optical resonators with distributed Bragg-reflectors,” Opt. Commun. 19, 138–142 (1976).

Onaka, K.

M. Okuda, M. Toyota, K. Onaka, “Saturable optical resonators with distributed Bragg-reflectors,” Opt. Commun. 19, 138–142 (1976).

Sakuda, K.

Seaton, C. T.

T. J. Cullen, C. N. Ironside, C. T. Seaton, G. I. Stegeman, “Semiconductor-doped glass ion-exchanged waveguides,” Appl. Phys. Lett. 49, 1403–1405 (1986).

S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glass,” Appl. Phys. Lett. 46, 801–802 (1985).

Shimomura, K.

K. Shimomura, H. Murata, M. Izutsu, T. Sueta, “Saturable absorption in ion-exchanged CdSxSe1–x-doped glass waveguides,” Jpn. J. Appl. Phys. 32, 840–842 (1993).

Shin, S.

Stegeman, G. I.

T. J. Cullen, C. N. Ironside, C. T. Seaton, G. I. Stegeman, “Semiconductor-doped glass ion-exchanged waveguides,” Appl. Phys. Lett. 49, 1403–1405 (1986).

S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glass,” Appl. Phys. Lett. 46, 801–802 (1985).

Sueta, T.

K. Shimomura, H. Murata, M. Izutsu, T. Sueta, “Saturable absorption in ion-exchanged CdSxSe1–x-doped glass waveguides,” Jpn. J. Appl. Phys. 32, 840–842 (1993).

Suga, S.

Toyota, M.

M. Okuda, M. Toyota, K. Onaka, “Saturable optical resonators with distributed Bragg-reflectors,” Opt. Commun. 19, 138–142 (1976).

Yamada, M.

Yao, S. S.

S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glass,” Appl. Phys. Lett. 46, 801–802 (1985).

Yumoto, J.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

S. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glass,” Appl. Phys. Lett. 46, 801–802 (1985).

T. J. Cullen, C. N. Ironside, C. T. Seaton, G. I. Stegeman, “Semiconductor-doped glass ion-exchanged waveguides,” Appl. Phys. Lett. 49, 1403–1405 (1986).

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

K. Shimomura, H. Murata, M. Izutsu, T. Sueta, “Saturable absorption in ion-exchanged CdSxSe1–x-doped glass waveguides,” Jpn. J. Appl. Phys. 32, 840–842 (1993).

Opt. Commun. (1)

M. Okuda, M. Toyota, K. Onaka, “Saturable optical resonators with distributed Bragg-reflectors,” Opt. Commun. 19, 138–142 (1976).

Opt. Lett. (1)

Other (3)

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, Fla., 1985), Chap. 7, p. 316.

T. Mizumoto, Y. Ibusuki, K. Nakatsuhara, Y. Naito, “Waveguide optical bistable device with weighted distributed feedback structure,” in Conference on Lasers and Electro-Optics Europe, Vol. of 1994 Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 354–355.

K. Araki, Y. Naito, “Side-lobes suppression in DBR filters,” Tech. Rep. EMT-82-102 (Institute of Electrical Engineers of Japan, Tokyo, 1982) (in Japanese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the W-DFB optical bistable device in a CdS x Se1−x -doped glass substrate.

Fig. 2
Fig. 2

Longitudinal cross sections of (a) the W-DFB structure and (b) the U-DFB structure.

Fig. 3
Fig. 3

Transmittance of W-DFB and U-DFB structures for low input intensity as a function of detuning Δn/n 0.

Fig. 4
Fig. 4

Typical transmission characteristics of W-DFB and U-DFB structures versus input intensity.

Fig. 5
Fig. 5

(a) Normalized threshold intensity I C1 × n 2 as a function of absorption coefficient α0 and (b) the transmission characteristics of the W-DFB device versus input intensity, where α0 is taken as a parameter.

Fig. 6
Fig. 6

Comparison of the characteristics of W-DFB and U-DFB structures as a function of absorption coefficient α0. (a) On-state transmittance T h1. For Δn/n 0 = 0%, the on-state transmittance of the W-DFB bistable device is less than 0.01, whereas that of the U-DFB one is less than 0.0008. (b) On–off ratio of transmittance T h1/T l1.

Fig. 7
Fig. 7

Coupling coefficient κ versus grating depth where the thickness of Corning 7059 glass cladding layer d 1 is taken as a parameter.

Fig. 8
Fig. 8

Schematic of the grating-pattern fabrication by use of the double-coating technique and holographic exposure: (a) first photoresist coating followed by exposure to ultraviolet light, (b) second photoresist coating, (c) holographic exposure and development, and (d) CHF3 reactive ion etching.

Fig. 9
Fig. 9

Scanning electron microscope pictures of the fabricated grating: (a) top view, (b) cross-sectional view.

Tables (1)

Tables Icon

Table 1 Etching Condition Used in CHF3 Reactive Ion Etching

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

κ 1 κ 2 = ( R + 1 ) 2 R 2 + 1 ,
L 1 L 2 = 4 κ 1 L 1 π R 2 + 1 ( R + 1 ) 2 R R 1 ,
R = [ ( θ 1 2 + κ 1 2 L 1 2 ) 1 / 2 + κ 1 L 1 ( θ 1 2 + κ 1 2 L 1 2 ) 1 / 2 κ 1 L 1 ] 1 / 2 ,
n = n 0 + n 2 I ,

Metrics