Abstract

Magnesium diffusion can be used to optimize the characteristics and performance of a Ti:LiNbO3 Mach–Zehnder modulator. Suitable use of titanium/magnesium double diffusion reduces fiber–waveguide coupling loss, minimizes the modulator size by increasing the bend radius of curvature without increasing bend losses, and decreases separation of the modulator arms. The proposed method also makes it possible to reduce the modulating voltage by improvement of guided-wave lateral confinement. Secondary ion mass spectrometry and m-line techniques are used to characterize Ti/Mg:LiNbO3 waveguides. A numerical optimization procedure based on the full vectorial beam-propagation method is presented.

© 1996 Optical Society of America

Full Article  |  PDF Article
Related Articles
Polarization, scattering, and coherent effects in semiconductor rib waveguide bends

R. J. Deri and R. J. Hawkins
Opt. Lett. 13(10) 922-924 (1988)

Zinc-diffused two-dimensional optical waveguides in n-type GaAs

E. Garmire, D. F. Lovelace, and G. H. B. Thompson
Appl. Opt. 15(6) 1394-1397 (1976)

Characteristics of Ti-diffused lithium niobate optical directional couplers

R. C. Alferness, R. V. Schmidt, and E. H. Turner
Appl. Opt. 18(23) 4012-4016 (1979)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription