Abstract

In z-cut lithium niobate (LiNbO3) samples, surface damage has been observed after diffusion in a wet atmosphere, but recent reports show that with controlled flow of water vapor waveguides with good surface morphology and low loss can be obtained. Y-cut waveguides do not show any surface damage. Fabrication of y-cut waveguides diffused with controlled variation of water vapor in the ambient has not been reported to the best of our knowledge. We show that a minimum loss in y-cut waveguides is obtained at a particular water vapor content in the ambient, which is lower than the loss obtained for waveguides diffused in dry ambient. We have found a decrease in the waveguide loss to 0.3 dB/cm from 0.6 dB/cm for 1 mL of water vapor passed per hour as compared with a dry atmosphere.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Tsai, ed., Guided-Wave Acousto-Optics (Springer-Verlag, Berlin, 1990), p. 127.
  2. T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, 1990), p. 175.
  3. J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of outdiffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, 509–511 (1981).
  4. O. Eknoyan, A. S. Greenblatt, W. K. Burns, C. Bulmer, “Characterization of Ti:LiNbO3 deep waveguides diffused in dry and wet oxygen ambient,” Appl. Opt. 25, 737–739 (1986).
  5. T. Nozawa, H. Miyazawa, S. Miyazawa, “Water vapour effects on titanium diffusion into LiNbO3 substrates,” Jpn. J. Appl. Phys. 29, 2180–2185 (1990).
  6. M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, G. Celotti, “TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapours,” J. Appl. Phys. 57, 1482–1488 (1985).
  7. C. E. Rice, R. J. Holmes, “A new rutile structure solid-solution phase in the LiNbO3O8–TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836–3839 (1986).

1990

T. Nozawa, H. Miyazawa, S. Miyazawa, “Water vapour effects on titanium diffusion into LiNbO3 substrates,” Jpn. J. Appl. Phys. 29, 2180–2185 (1990).

1986

C. E. Rice, R. J. Holmes, “A new rutile structure solid-solution phase in the LiNbO3O8–TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836–3839 (1986).

O. Eknoyan, A. S. Greenblatt, W. K. Burns, C. Bulmer, “Characterization of Ti:LiNbO3 deep waveguides diffused in dry and wet oxygen ambient,” Appl. Opt. 25, 737–739 (1986).

1985

M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, G. Celotti, “TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapours,” J. Appl. Phys. 57, 1482–1488 (1985).

1981

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of outdiffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, 509–511 (1981).

Armenise, M. N.

M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, G. Celotti, “TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapours,” J. Appl. Phys. 57, 1482–1488 (1985).

Bulmer, C.

Burns, W. K.

Canali, C.

M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, G. Celotti, “TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapours,” J. Appl. Phys. 57, 1482–1488 (1985).

Carnera, A.

M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, G. Celotti, “TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapours,” J. Appl. Phys. 57, 1482–1488 (1985).

Celotti, G.

M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, G. Celotti, “TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapours,” J. Appl. Phys. 57, 1482–1488 (1985).

De Sario, M.

M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, G. Celotti, “TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapours,” J. Appl. Phys. 57, 1482–1488 (1985).

Eknoyan, O.

Greenblatt, A. S.

Holmes, R. J.

C. E. Rice, R. J. Holmes, “A new rutile structure solid-solution phase in the LiNbO3O8–TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836–3839 (1986).

Jackel, J. L.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of outdiffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, 509–511 (1981).

Lyman, S. P.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of outdiffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, 509–511 (1981).

Mazzoldi, P.

M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, G. Celotti, “TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapours,” J. Appl. Phys. 57, 1482–1488 (1985).

Miyazawa, H.

T. Nozawa, H. Miyazawa, S. Miyazawa, “Water vapour effects on titanium diffusion into LiNbO3 substrates,” Jpn. J. Appl. Phys. 29, 2180–2185 (1990).

Miyazawa, S.

T. Nozawa, H. Miyazawa, S. Miyazawa, “Water vapour effects on titanium diffusion into LiNbO3 substrates,” Jpn. J. Appl. Phys. 29, 2180–2185 (1990).

Nozawa, T.

T. Nozawa, H. Miyazawa, S. Miyazawa, “Water vapour effects on titanium diffusion into LiNbO3 substrates,” Jpn. J. Appl. Phys. 29, 2180–2185 (1990).

Ramaswamy, V.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of outdiffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, 509–511 (1981).

Rice, C. E.

C. E. Rice, R. J. Holmes, “A new rutile structure solid-solution phase in the LiNbO3O8–TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836–3839 (1986).

Appl. Opt.

Appl. Phys. Lett.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of outdiffused surface guiding in titanium-diffused LiNbO3,” Appl. Phys. Lett. 38, 509–511 (1981).

J. Appl. Phys.

M. De Sario, M. N. Armenise, C. Canali, A. Carnera, P. Mazzoldi, G. Celotti, “TiO2, LiNb3O8, and (TixNb1−x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapours,” J. Appl. Phys. 57, 1482–1488 (1985).

C. E. Rice, R. J. Holmes, “A new rutile structure solid-solution phase in the LiNbO3O8–TiO2 system, and its role in Ti diffusion into LiNbO3,” J. Appl. Phys. 60, 3836–3839 (1986).

Jpn. J. Appl. Phys.

T. Nozawa, H. Miyazawa, S. Miyazawa, “Water vapour effects on titanium diffusion into LiNbO3 substrates,” Jpn. J. Appl. Phys. 29, 2180–2185 (1990).

Other

C. S. Tsai, ed., Guided-Wave Acousto-Optics (Springer-Verlag, Berlin, 1990), p. 127.

T. Tamir, ed., Guided-Wave Optoelectronics (Springer-Verlag, Berlin, 1990), p. 175.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the appearance of different phases during titanium diffusion in LiNbO3: (a) Ti metal on LiNbO3; (b) TiO2 polycrystalline structure; (c) epitaxial crystallites of LiNb3O8; (d) epitaxial growth of a solid solution of LiNb3O8 and TiO2 having a rutile structure, where x depends on the temperature and cut (x = 0.58 at 1000 °C; (e) titanium-diffused lithium niobate.6,7

Fig. 2
Fig. 2

Waveguide loss versus water vapor passed per hour.

Fig. 3
Fig. 3

Surface profile of the waveguide for (a) 5 mL and (b) 1 mL of water vapor passed per hour.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = 10 log ( P 2 / P 1 ) ( L 1 L 2 ) ,

Metrics