Abstract

A single-mode GaAlAs diode laser with over 90% output-coupling power and a large frequency-scanning range is reported. Based on grating feedback in the Littrow configuration, it is demonstrated that, with weak feedback (1.5 × 10−3 in this experiment), over a 7.5-GHz continuous tuning range can be achieved around tuning gaps of free-running operation. A frequency self-locking effect is also demonstrated in this system.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
  2. W. H. Richardson, S. Machida, Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).
  3. C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and CW diode laser injection control of a titanium-dopped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).
  4. C. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992).
  5. R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–450 (1972).
  6. D. R. Hjelme, A. R. Mickelson, “On the theory of external cavity operated single-mode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1000–1004 (1987).
  7. P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).
  8. B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987).
  9. A. Hemmerich, D. H. Mcintyre, D. Schropp, D. Meschede, T. W. Hansch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118–122 (1990).
  10. For the 5-cm confocal interferometer used in our experiment, the linewidth is measured to be approximately 7.5 MHz. The Littrow angle θL ≈ 44.6° for 780 nm, together with a measured beam size on the grating surface of approximately 1.5 mm and the grating constant of 1800 mm−1, we get a dispersive FWHM of the grating around 33 GHz.
  11. K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow and tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
  12. A. Olsson, C. L. Tang, “Coherent optical interference effects in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).
  13. D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external feedback,” IEEE J. Quantum Electron. 27, 352–371 (1991).
  14. Ph. Laurent, A. Clairon, Ch. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).

1992 (3)

C. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992).

P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow and tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).

1991 (3)

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external feedback,” IEEE J. Quantum Electron. 27, 352–371 (1991).

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).

W. H. Richardson, S. Machida, Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).

1990 (1)

A. Hemmerich, D. H. Mcintyre, D. Schropp, D. Meschede, T. W. Hansch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118–122 (1990).

1989 (1)

Ph. Laurent, A. Clairon, Ch. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).

1988 (1)

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and CW diode laser injection control of a titanium-dopped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).

1987 (2)

D. R. Hjelme, A. R. Mickelson, “On the theory of external cavity operated single-mode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1000–1004 (1987).

B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987).

1981 (1)

A. Olsson, C. L. Tang, “Coherent optical interference effects in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).

1972 (1)

R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–450 (1972).

Bair, C. H.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and CW diode laser injection control of a titanium-dopped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).

Beausoleil, R. G.

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external feedback,” IEEE J. Quantum Electron. 27, 352–371 (1991).

Brandenberger, J. R.

P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).

Breant, Ch.

Ph. Laurent, A. Clairon, Ch. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).

Brockman, P.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and CW diode laser injection control of a titanium-dopped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).

Clairon, A.

Ph. Laurent, A. Clairon, Ch. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).

Dahmani, B.

Drullinger, R.

Hamilton, C. E.

Hansch, T. W.

A. Hemmerich, D. H. Mcintyre, D. Schropp, D. Meschede, T. W. Hansch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118–122 (1990).

Harris, E. P.

R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–450 (1972).

Hemmerich, A.

A. Hemmerich, D. H. Mcintyre, D. Schropp, D. Meschede, T. W. Hansch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118–122 (1990).

Hess, R. V.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and CW diode laser injection control of a titanium-dopped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external feedback,” IEEE J. Quantum Electron. 27, 352–371 (1991).

D. R. Hjelme, A. R. Mickelson, “On the theory of external cavity operated single-mode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1000–1004 (1987).

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).

B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987).

Laurent, Ph.

Ph. Laurent, A. Clairon, Ch. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).

Ludeke, R.

R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–450 (1972).

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow and tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).

Machida, S.

W. H. Richardson, S. Machida, Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).

Mcintyre, D. H.

A. Hemmerich, D. H. Mcintyre, D. Schropp, D. Meschede, T. W. Hansch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118–122 (1990).

Meschede, D.

A. Hemmerich, D. H. Mcintyre, D. Schropp, D. Meschede, T. W. Hansch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118–122 (1990).

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external feedback,” IEEE J. Quantum Electron. 27, 352–371 (1991).

D. R. Hjelme, A. R. Mickelson, “On the theory of external cavity operated single-mode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1000–1004 (1987).

Modlin, E. A.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and CW diode laser injection control of a titanium-dopped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).

Olsson, A.

A. Olsson, C. L. Tang, “Coherent optical interference effects in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).

Richardson, W. H.

W. H. Richardson, S. Machida, Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).

Ruprecht, P. A.

P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).

Schropp, D.

A. Hemmerich, D. H. Mcintyre, D. Schropp, D. Meschede, T. W. Hansch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118–122 (1990).

Steinbach, A.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow and tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).

Tang, C. L.

A. Olsson, C. L. Tang, “Coherent optical interference effects in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).

Wieman, C.

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow and tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).

Yamamoto, Y.

W. H. Richardson, S. Machida, Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).

Am. J. Phys. (1)

K. B. MacAdam, A. Steinbach, C. Wieman, “A narrow and tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).

Appl. Phys. Lett. (1)

R. Ludeke, E. P. Harris, “Tunable GaAs laser in an external dispersive cavity,” Appl. Phys. Lett. 20, 499–450 (1972).

IEEE J. Quantum Electron. (5)

D. R. Hjelme, A. R. Mickelson, “On the theory of external cavity operated single-mode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 1000–1004 (1987).

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, “Demonstration of frequency control and CW diode laser injection control of a titanium-dopped sapphire ring laser with no internal optical elements,” IEEE J. Quantum Electron. 24, 1045–1048 (1988).

A. Olsson, C. L. Tang, “Coherent optical interference effects in external-cavity semiconductor lasers,” IEEE J. Quantum Electron. QE-17, 1320–1323 (1981).

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external feedback,” IEEE J. Quantum Electron. 27, 352–371 (1991).

Ph. Laurent, A. Clairon, Ch. Breant, “Frequency noise analysis of optically self-locked diode lasers,” IEEE J. Quantum Electron. 25, 1131–1142 (1989).

Opt. Commun. (2)

A. Hemmerich, D. H. Mcintyre, D. Schropp, D. Meschede, T. W. Hansch, “Optically stabilized narrow linewidth semiconductor laser for high resolution spectroscopy,” Opt. Commun. 75, 118–122 (1990).

P. A. Ruprecht, J. R. Brandenberger, “Enhancing diode laser tuning with a short external cavity,” Opt. Commun. 93, 82–86 (1992).

Opt. Lett. (2)

Phys. Rev. Lett. (1)

W. H. Richardson, S. Machida, Y. Yamamoto, “Squeezed photon-number noise and sub-poissonian electrical partition noise in a semiconductor laser,” Phys. Rev. Lett. 66, 2867–2870 (1991).

Rev. Sci. Instrum. (1)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).

Other (1)

For the 5-cm confocal interferometer used in our experiment, the linewidth is measured to be approximately 7.5 MHz. The Littrow angle θL ≈ 44.6° for 780 nm, together with a measured beam size on the grating surface of approximately 1.5 mm and the grating constant of 1800 mm−1, we get a dispersive FWHM of the grating around 33 GHz.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the diode-laser system with grating feedback: BS, beam splitter; OD, optical isolator (approximately 30 dB); SE, confocal scanning étalon (1.5 GHz); PZT, piezo transducer.

Fig. 2.
Fig. 2.

Scanning range of the laser system with weak feedback (0.0015) and with injection-current scanning following. Curve a, Doppler-broadened absorption spectrum of rubidium atoms around D 2 lines at room temperature. (i) 87Rb F = 2 → = 1, 2, 3; (ii) 85Rb F = 3 → = 2, 3, 4; (iii) 85Rb F = 2 → = 1, 2, 3. Curve b, 1.5-GHz-FSR CFP interferometer transmission spectrum. On the two ends of the absorption curve, the two sharp edges correspond to two mode-hopping positions. Both ramp voltage and current gain are optimized.

Fig. 3.
Fig. 3.

Relation between scanning range and feedback strength. The solid curve is the polynomial-fitting curve for the experimental data. Here the applied voltage on the grating piezo is fixed to a moderate level of 300 V and with a frequency of 25 Hz. P 0 and P B represent the output power and the feedback power of the diode laser, respectively.

Fig. 4.
Fig. 4.

Beat-note spectrum of two similar independent diode lasers both with weak grating feedback. The spectrum analyzer (SPAN) is set to have a vertical sensitivity of 10 dB per division (Div) and 5 MHz in the horizontal axis. The resolution bandwidth (RBW) is 5 MHz, and a 30-kHz video filter (VF) is active.

Fig. 5.
Fig. 5.

Mode structures and frequency self-locking. FSRdiode and FSRext are the free spectral ranges for the diode cavity and the external cavity, respectively. The wide vertical lines represent the diode-cavity modes and the thin lines the external cavity modes. I, mode structure of the diode cavity: φ0 and φ1 correspond to the nth and the n + 1th modes. II, mode structure of the external cavity: θ−1 … θ2 correspond to the m − 1th … m + 1th modes. When θ = θ0 = φ0, the mth mode of the external cavity and the nth mode of the diode cavity are coincident. III, frequency self-locking: ν 0 is the starting frequency when the scanning begins. When the external cavity length is changed, the cavity modes will shift to the new positions (dashed vertical lines). ν T is the maximum value for frequency self-locking with a range Δ.

Metrics