Abstract

Calculations and experimental measurements of the thermally induced strain and birefringence are presented for a diode-pumped Nd:YAG rod that is encapsulated in a prismatic pump light collector. A numerical model is developed to determine the spatiotemporal stress-induced strain distribution across the prism, index-matching fixant, and laser rod, and the birefringence that arises from the stress-induced strain within the laser rod. Calculations of the birefringence are compared with polarscopic measurements and display good agreement. Support for the rod on all sides is provided by the prism and fixant, and the distribution and degree of the stress-induced strain (and birefringence) within the laser rod are therefore influenced by the geometry and composition of the prism and fixant. These strains are thermomechanical in origin and are primarily a function of the elastic modulus of the fixant and the temperature of the system. Such stress-induced strains are additional to those strains that are produced from temperature gradients across the laser rod and result from the laser rod being constrained from expanding. Collectors utilizing index-matching fluid as the encapsulant display the smallest measure of birefringence relating to the temperature gradients in the rod. However, for collectors utilizing solid fixants (with significant elastic modulus), an increase in the birefringence results. In this case collector designs that have the laser rod located in a symmetrically shaped prism are effective in reducing the nonuniform pressures on the sides of the rod and therefore the birefringence. 1996 Optical Society of America r

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription