Abstract

The self-linearized self-electro-optic-effect-device (SL-SEED) phenomenon observed with a quantumwell modulator and photodiode serial combination is one of the few practical routes to optical subtraction. A family of optical lateral inhibition architectures based on the SL-SEED that incorporate optical feedback is introduced and their operation confirmed in simulation. A successful experimental demonstration based on these ideas, performing edge-contrast enhancement by lateral inhibition, is described. System interconnections are both optical and electrical, with nonlocal interconnections being made optically by the use of diffractive elements.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Jernigan, R. J. Belshaw, G. F. McLean, “Nonlinear lateral inhibition and image processing,” in Sensory Neural Networks: Lateral Inhibition, B. Nabet, R. B. Pinter, eds. (CRC, Boca Raton, Fla., 1991),p. 27.
  2. S. Kakizaki, P. Horan, “Limitations of optical lateral interconnection of smart pixel arrays,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 201–203.
  3. N. A. Farhat, D. Psaltis, A. Prata, E. Paek, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985).
  4. C. H. Wang, B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).
  5. I. Shariv, A. A. Friesem, “All-optical neural network with inhibitory neurons,” Opt. Lett. 14, 485–487 (1989).
  6. W. Kawakami, H. Yoshinaga, K. Kitayama, “Demonstration of an optical inhibitory neural network,” Opt. Lett. 14, 984–986 (1989).
  7. D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).
  8. A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
  9. D. A. B. Miller, “Novel analog self-electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).
  10. B. L. Shoop, B. Pezeshki, J. W. Goodman, J. S. Harris, “Noninterferometric optical subtraction using reflection-electroabsorption modulators,” Opt. Lett. 17, 58–60 (1992).
  11. K. K. Law, J. L. Merz, L. A. Coldren, “Self-linearised optical modulation of a normally-on asymmetric Fabry-Perot modulator with high contrast, low insertion loss and low operating energy,” Jpn. J. Appl. Phys. 31, L1699–L1701 (1992).
  12. E. A. De Souza, D. A. B. Miller, “Spatial image differentiation using analog differential self-electrooptic effect devices,” presented at the IEEE/LEOS Summer Topical Meeting on Smart Pixels, Lake Tahoe, Nev., July 1994, paper PD2.
  13. M. Whitehead, A. Rivers, G. Parry, “Low voltage multiple quantum well reflection modulator with on:off ratio >100:1,” Electron. Lett. 25, 52–58 (1989).
  14. P. Horan, “Optical lateral inhibition networks using self-linearised SEED's,” in Proceedings of the International Conference on Optical Computing, Vol. 139 of AOP Conference Series, B. S. Wherrett, ed. (Institute of Physics, Bristol, UK, 1995), pp. 403–406.
  15. B. Kelly, J. Hegarty, P. Horan, F. A. P. Tooley, M. R. Taghizadeh, “Demonstration of a laterally inhibitive optical preprocessor using quantum well Fabry–Perot modulators,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper OTuE13, pp. 195–197.
  16. Y. Cheng, Z. Wan, “Distribution of winners in local lateral inhibition,” in Proceedings ofthe International Joint Conference on Neural Networks, IEEE 92 CH 33114-6, (IEEE, New York, 1992), pp. III-456–III-460.
  17. T. Kohonen, “The self-organizing map,” Proc. IEEE 78, 1464–1480 (1990).
  18. S. Grossberg, “Nonlinear neural networks: principles, mechanisms, and architectures,” Neural Networks 1, 17–61 (1988).
  19. A. Jennings, P. Horan, B. Kelly, J. Hegarty, “Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity,” IEEE Photonics Technol. Lett. 4, 858–860 (1992).
  20. P. Horowitz, W. Hill, The Art of Electronics, 2nd ed. (Cambridge U. Press, Cambridge, 1989), p. 88.
  21. F. A. P. Tooley, S. Wakelin, M. R. Taghizadeh, “Interconnects for a symmetric self-electro-optic-effect device cellular-logic image processor,” Appl. Opt. 33, 1398–1403 (1994).
  22. A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).
  23. T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridised to silicon integrated circuits,” in Spatial Light Modulators, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 1–5.

1994 (1)

1993 (2)

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).

D. A. B. Miller, “Novel analog self-electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).

1992 (4)

B. L. Shoop, B. Pezeshki, J. W. Goodman, J. S. Harris, “Noninterferometric optical subtraction using reflection-electroabsorption modulators,” Opt. Lett. 17, 58–60 (1992).

K. K. Law, J. L. Merz, L. A. Coldren, “Self-linearised optical modulation of a normally-on asymmetric Fabry-Perot modulator with high contrast, low insertion loss and low operating energy,” Jpn. J. Appl. Phys. 31, L1699–L1701 (1992).

A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).

A. Jennings, P. Horan, B. Kelly, J. Hegarty, “Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity,” IEEE Photonics Technol. Lett. 4, 858–860 (1992).

1990 (2)

T. Kohonen, “The self-organizing map,” Proc. IEEE 78, 1464–1480 (1990).

C. H. Wang, B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).

1989 (3)

1988 (1)

S. Grossberg, “Nonlinear neural networks: principles, mechanisms, and architectures,” Neural Networks 1, 17–61 (1988).

1985 (2)

N. A. Farhat, D. Psaltis, A. Prata, E. Paek, “Optical implementation of the Hopfield model,” Appl. Opt. 24, 1469–1475 (1985).

D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).

Belshaw, R. J.

M. E. Jernigan, R. J. Belshaw, G. F. McLean, “Nonlinear lateral inhibition and image processing,” in Sensory Neural Networks: Lateral Inhibition, B. Nabet, R. B. Pinter, eds. (CRC, Boca Raton, Fla., 1991),p. 27.

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).

Cheng, Y.

Y. Cheng, Z. Wan, “Distribution of winners in local lateral inhibition,” in Proceedings ofthe International Joint Conference on Neural Networks, IEEE 92 CH 33114-6, (IEEE, New York, 1992), pp. III-456–III-460.

Coldren, L. A.

K. K. Law, J. L. Merz, L. A. Coldren, “Self-linearised optical modulation of a normally-on asymmetric Fabry-Perot modulator with high contrast, low insertion loss and low operating energy,” Jpn. J. Appl. Phys. 31, L1699–L1701 (1992).

Dame, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).

De Souza, E. A.

E. A. De Souza, D. A. B. Miller, “Spatial image differentiation using analog differential self-electrooptic effect devices,” presented at the IEEE/LEOS Summer Topical Meeting on Smart Pixels, Lake Tahoe, Nev., July 1994, paper PD2.

Farhat, N. A.

Friesem, A. A.

Goodman, J. W.

B. L. Shoop, B. Pezeshki, J. W. Goodman, J. S. Harris, “Noninterferometric optical subtraction using reflection-electroabsorption modulators,” Opt. Lett. 17, 58–60 (1992).

Goodwin, M. J.

A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).

Grossberg, S.

S. Grossberg, “Nonlinear neural networks: principles, mechanisms, and architectures,” Neural Networks 1, 17–61 (1988).

Harris, J. S.

B. L. Shoop, B. Pezeshki, J. W. Goodman, J. S. Harris, “Noninterferometric optical subtraction using reflection-electroabsorption modulators,” Opt. Lett. 17, 58–60 (1992).

Hegarty, J.

A. Jennings, P. Horan, B. Kelly, J. Hegarty, “Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity,” IEEE Photonics Technol. Lett. 4, 858–860 (1992).

B. Kelly, J. Hegarty, P. Horan, F. A. P. Tooley, M. R. Taghizadeh, “Demonstration of a laterally inhibitive optical preprocessor using quantum well Fabry–Perot modulators,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper OTuE13, pp. 195–197.

Hill, W.

P. Horowitz, W. Hill, The Art of Electronics, 2nd ed. (Cambridge U. Press, Cambridge, 1989), p. 88.

Horan, P.

A. Jennings, P. Horan, B. Kelly, J. Hegarty, “Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity,” IEEE Photonics Technol. Lett. 4, 858–860 (1992).

B. Kelly, J. Hegarty, P. Horan, F. A. P. Tooley, M. R. Taghizadeh, “Demonstration of a laterally inhibitive optical preprocessor using quantum well Fabry–Perot modulators,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper OTuE13, pp. 195–197.

P. Horan, “Optical lateral inhibition networks using self-linearised SEED's,” in Proceedings of the International Conference on Optical Computing, Vol. 139 of AOP Conference Series, B. S. Wherrett, ed. (Institute of Physics, Bristol, UK, 1995), pp. 403–406.

S. Kakizaki, P. Horan, “Limitations of optical lateral interconnection of smart pixel arrays,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 201–203.

Horowitz, P.

P. Horowitz, W. Hill, The Art of Electronics, 2nd ed. (Cambridge U. Press, Cambridge, 1989), p. 88.

Jenkins, B. K.

C. H. Wang, B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).

Jennings, A.

A. Jennings, P. Horan, B. Kelly, J. Hegarty, “Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity,” IEEE Photonics Technol. Lett. 4, 858–860 (1992).

Jernigan, M. E.

M. E. Jernigan, R. J. Belshaw, G. F. McLean, “Nonlinear lateral inhibition and image processing,” in Sensory Neural Networks: Lateral Inhibition, B. Nabet, R. B. Pinter, eds. (CRC, Boca Raton, Fla., 1991),p. 27.

Kakizaki, S.

S. Kakizaki, P. Horan, “Limitations of optical lateral interconnection of smart pixel arrays,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 201–203.

Kawakami, W.

Kearley, M. Q.

A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).

Kelly, B.

A. Jennings, P. Horan, B. Kelly, J. Hegarty, “Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity,” IEEE Photonics Technol. Lett. 4, 858–860 (1992).

B. Kelly, J. Hegarty, P. Horan, F. A. P. Tooley, M. R. Taghizadeh, “Demonstration of a laterally inhibitive optical preprocessor using quantum well Fabry–Perot modulators,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper OTuE13, pp. 195–197.

Kitayama, K.

Kohonen, T.

T. Kohonen, “The self-organizing map,” Proc. IEEE 78, 1464–1480 (1990).

Lane, B.

T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridised to silicon integrated circuits,” in Spatial Light Modulators, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 1–5.

Law, K. K.

K. K. Law, J. L. Merz, L. A. Coldren, “Self-linearised optical modulation of a normally-on asymmetric Fabry-Perot modulator with high contrast, low insertion loss and low operating energy,” Jpn. J. Appl. Phys. 31, L1699–L1701 (1992).

Lentine, A. L.

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).

Martin, R.

T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridised to silicon integrated circuits,” in Spatial Light Modulators, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 1–5.

McLean, G. F.

M. E. Jernigan, R. J. Belshaw, G. F. McLean, “Nonlinear lateral inhibition and image processing,” in Sensory Neural Networks: Lateral Inhibition, B. Nabet, R. B. Pinter, eds. (CRC, Boca Raton, Fla., 1991),p. 27.

Merz, J. L.

K. K. Law, J. L. Merz, L. A. Coldren, “Self-linearised optical modulation of a normally-on asymmetric Fabry-Perot modulator with high contrast, low insertion loss and low operating energy,” Jpn. J. Appl. Phys. 31, L1699–L1701 (1992).

Miller, D. A. B.

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).

D. A. B. Miller, “Novel analog self-electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).

D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).

E. A. De Souza, D. A. B. Miller, “Spatial image differentiation using analog differential self-electrooptic effect devices,” presented at the IEEE/LEOS Summer Topical Meeting on Smart Pixels, Lake Tahoe, Nev., July 1994, paper PD2.

Morris, R. C.

A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).

Moseley, A. J.

A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).

Paek, E.

Parry, G.

M. Whitehead, A. Rivers, G. Parry, “Low voltage multiple quantum well reflection modulator with on:off ratio >100:1,” Electron. Lett. 25, 52–58 (1989).

Pezeshki, B.

B. L. Shoop, B. Pezeshki, J. W. Goodman, J. S. Harris, “Noninterferometric optical subtraction using reflection-electroabsorption modulators,” Opt. Lett. 17, 58–60 (1992).

Prata, A.

Psaltis, D.

Ritter, K. J.

T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridised to silicon integrated circuits,” in Spatial Light Modulators, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 1–5.

Rivers, A.

M. Whitehead, A. Rivers, G. Parry, “Low voltage multiple quantum well reflection modulator with on:off ratio >100:1,” Electron. Lett. 25, 52–58 (1989).

Robbins, D. J.

A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).

Shariv, I.

Shoop, B. L.

B. L. Shoop, B. Pezeshki, J. W. Goodman, J. S. Harris, “Noninterferometric optical subtraction using reflection-electroabsorption modulators,” Opt. Lett. 17, 58–60 (1992).

Taghizadeh, M. R.

F. A. P. Tooley, S. Wakelin, M. R. Taghizadeh, “Interconnects for a symmetric self-electro-optic-effect device cellular-logic image processor,” Appl. Opt. 33, 1398–1403 (1994).

B. Kelly, J. Hegarty, P. Horan, F. A. P. Tooley, M. R. Taghizadeh, “Demonstration of a laterally inhibitive optical preprocessor using quantum well Fabry–Perot modulators,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper OTuE13, pp. 195–197.

Thompson, J.

A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).

Tooley, F. A. P.

F. A. P. Tooley, S. Wakelin, M. R. Taghizadeh, “Interconnects for a symmetric self-electro-optic-effect device cellular-logic image processor,” Appl. Opt. 33, 1398–1403 (1994).

B. Kelly, J. Hegarty, P. Horan, F. A. P. Tooley, M. R. Taghizadeh, “Demonstration of a laterally inhibitive optical preprocessor using quantum well Fabry–Perot modulators,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper OTuE13, pp. 195–197.

Wakelin, S.

Wan, Z.

Y. Cheng, Z. Wan, “Distribution of winners in local lateral inhibition,” in Proceedings ofthe International Joint Conference on Neural Networks, IEEE 92 CH 33114-6, (IEEE, New York, 1992), pp. III-456–III-460.

Wang, C. H.

C. H. Wang, B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).

Whitehead, M.

M. Whitehead, A. Rivers, G. Parry, “Low voltage multiple quantum well reflection modulator with on:off ratio >100:1,” Electron. Lett. 25, 52–58 (1989).

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).

Worchesky, T. L.

T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridised to silicon integrated circuits,” in Spatial Light Modulators, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 1–5.

Yoshinaga, H.

Appl. Opt. (1)

C. H. Wang, B. K. Jenkins, “Subtracting incoherent optical neuron model: analysis, experiment, and applications,” Appl. Opt. 29, 2171–2186 (1990).

Appl. Opt. (2)

Electron. Lett. (1)

M. Whitehead, A. Rivers, G. Parry, “Low voltage multiple quantum well reflection modulator with on:off ratio >100:1,” Electron. Lett. 25, 52–58 (1989).

Electron. Lett. (1)

A. J. Moseley, M. Q. Kearley, R. C. Morris, D. J. Robbins, J. Thompson, M. J. Goodwin, “Uniform 8 × 8 array InGaAs/InP multiquantum well Fabry-Perot modulators for flipchip solder bond hybrid optical interconnect,” Electron. Lett. 28, 12–24 (1992).

IEEE J. Quantum Electron. (1)

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).

IEEE J. Quantum Electron. (2)

D. A. B. Miller, “Novel analog self-electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).

D. A. B. Miller, D. S. Chemla, T. C. Dame, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. 21, 1462–1475 (1985).

IEEE Photonics Technol. Lett. (1)

A. Jennings, P. Horan, B. Kelly, J. Hegarty, “Asymmetric Fabry-Perot device arrays with low insertion loss and high uniformity,” IEEE Photonics Technol. Lett. 4, 858–860 (1992).

Jpn. J. Appl. Phys. (1)

K. K. Law, J. L. Merz, L. A. Coldren, “Self-linearised optical modulation of a normally-on asymmetric Fabry-Perot modulator with high contrast, low insertion loss and low operating energy,” Jpn. J. Appl. Phys. 31, L1699–L1701 (1992).

Neural Networks (1)

S. Grossberg, “Nonlinear neural networks: principles, mechanisms, and architectures,” Neural Networks 1, 17–61 (1988).

Opt. Lett. (1)

B. L. Shoop, B. Pezeshki, J. W. Goodman, J. S. Harris, “Noninterferometric optical subtraction using reflection-electroabsorption modulators,” Opt. Lett. 17, 58–60 (1992).

Opt. Lett. (2)

Proc. IEEE (1)

T. Kohonen, “The self-organizing map,” Proc. IEEE 78, 1464–1480 (1990).

Other (8)

E. A. De Souza, D. A. B. Miller, “Spatial image differentiation using analog differential self-electrooptic effect devices,” presented at the IEEE/LEOS Summer Topical Meeting on Smart Pixels, Lake Tahoe, Nev., July 1994, paper PD2.

P. Horan, “Optical lateral inhibition networks using self-linearised SEED's,” in Proceedings of the International Conference on Optical Computing, Vol. 139 of AOP Conference Series, B. S. Wherrett, ed. (Institute of Physics, Bristol, UK, 1995), pp. 403–406.

B. Kelly, J. Hegarty, P. Horan, F. A. P. Tooley, M. R. Taghizadeh, “Demonstration of a laterally inhibitive optical preprocessor using quantum well Fabry–Perot modulators,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper OTuE13, pp. 195–197.

Y. Cheng, Z. Wan, “Distribution of winners in local lateral inhibition,” in Proceedings ofthe International Joint Conference on Neural Networks, IEEE 92 CH 33114-6, (IEEE, New York, 1992), pp. III-456–III-460.

M. E. Jernigan, R. J. Belshaw, G. F. McLean, “Nonlinear lateral inhibition and image processing,” in Sensory Neural Networks: Lateral Inhibition, B. Nabet, R. B. Pinter, eds. (CRC, Boca Raton, Fla., 1991),p. 27.

S. Kakizaki, P. Horan, “Limitations of optical lateral interconnection of smart pixel arrays,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), 201–203.

P. Horowitz, W. Hill, The Art of Electronics, 2nd ed. (Cambridge U. Press, Cambridge, 1989), p. 88.

T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridised to silicon integrated circuits,” in Spatial Light Modulators, Vol. 9 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 1–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Simplest form of the SL-SEED circuit: a voltage-independent current source (in this case a photodiode) in series with a multiple QW (MQW) reflection modulator. (b) Linear reflectance response of the SL-SEED to a current source. Each curve represents a different power incident upon the modulator.

Fig. 2
Fig. 2

(a) Single-stage network in a 1-D format with inhibitory feedback (inhib.f/b) to neighboring nodes but not to itself. (b) Expected result when a top-hat function is input with ±3 neighbors connected. The output pattern edges show a contrast improvement.

Fig. 3
Fig. 3

Schematic of a single-stage inhibitory network that incorporates subtraction of the original image.

Fig. 4
Fig. 4

(a) W-T-A architecture. (b) Simulation results for the above network (squares, input pattern; circles, output). Note the spurious output peak at node 23 caused by the finite interconnection range.

Fig. 5
Fig. 5

Wilson current mirror circuit. Gain is controlled by a variable resistor, R D .

Fig. 6
Fig. 6

Optical subtraction by the use of the circuit shown in Fig. 5 at various current amplification levels.

Fig. 7
Fig. 7

(a) Output of a 1 × 32 diffractive optical element used to generate the input pattern, (b) a 1 × 6 fan-out grating to the six nearest neighbors.

Fig. 8
Fig. 8

Optical system schematic: K1, K2, diffractive optical elements (DOE's); PBS's, polarizing beam splitters; λ/2 (λ/4), half-(quarter-) wave plate; L's, lenses.

Fig. 9
Fig. 9

Photograph of the system components.

Fig. 10
Fig. 10

Input and resulting outputs for (a) seven equal-intensity input spots, (b) a step function.

Fig. 11
Fig. 11

(a) Intensity dependence of the edge-enhanced output. The data are taken from the center pixel of the output in Fig. 10(a). (b) Output without feedback divided by that with detector feedback.

Metrics