Abstract

For optical interconnects to become a mature technology they must be amenable to electronic packaging technology. Two main obstacles to including free-space optical interconnects are alignment and heat-dissipation issues. Here we study the issues of alignment tolerancing that are due to assembly and manufacturing variations (passive-element tolerancing) over long board-level distances (>10 cm) for free-space optical interconnects. We also combine these variations with active optoelectronic device variations (active-element tolerancing). We demonstrate a computer-aided analysis procedure that permits one to determine both active- and passive-element tolerances needed to achieve some system-level specification, such as yield or cost. The procedure that we employ relies on developing a detailed design of the system to be studied in a standard optical design program, such as CODE V. Using information from this model, we can determine the integrated power falling on the detector, which we term optical throughput, by performing Gaussian propagation or general Fresnel propagation (if significant vignetting occurs). This optical throughput can be used to determine system-level performance criteria, such as bit-error rate. With this computer-aided analysis technique, a sensitivity analysis of all the variations under study is made on a system with realistic board-level interconnect distances to find each perturbation's relative effects (with other perturbations set to 0) on the power falling on the detector. This information is used to set initial tolerances for subsequent tolerancing analysis and design runs. A tolerancing analysis by Monte Carlo techniques is applied to determine if the yield or cost (yield is defined as the percentage of systems that have acceptable system performance) is acceptable. With a technique called parametric sampling, a subsequent tolerancing design run can be applied to optimize this yield or cost with little increase in computation. We study a design example and show that most of the tolerances can be achieved with current technology.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Smith, “Fundamentals of establishing an optical tolerancing budget,” in Geomerical Optics, R. E. Fischer, W. H. Price, W. J. Smith, eds., Proc. Soc. Photo-Opt. Instrum. Eng.531, 196–204 (1985).
  2. D. G. Koch, “A statistical approach to lens tolerancing,” in Computer-Aided Optical Design, R. E. Fischer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.147, 71–82 (1978).
  3. R. H. Ginsberg, “Outline of tolerancing (from specification to toleranced drawings),” Opt. Eng. 20, 175–180 (1981).
  4. G. E. Wise, ed., Selected Papers on Optical Tolerancing, Vol. MS-36 of SPIE Milestone Series, (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1991).
  5. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).
  6. F. Sauer, J. Johns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).
  7. R. S. Beech, A. J. Ghosh, “Optimization of alignability in integrated planar-optical interconnect packages,” Appl. Opt. 32, 5741–5749 (1993).
  8. D. Zaleta, S. Patra, J. Ma, S. H. Lee, “Misalignment sensitivity analysis of planar optical interconnect systems,” in Optoelectronic Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2153, 180–193 (1994).
  9. L. D. Dickson, “Characteristics of a propagating Gaussian beam,” Appl. Opt. 9, 1854–1861 (1970).
  10. P. Belland, J. P. Crenn, “Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture,” Appl. Opt. 21, 522–527 (1982).
  11. D. Zaleta, S. H. Lee, “Design of general Gaussian beam system for free-space optical interconnects,” submitted to Opt. Lett.1995.
  12. A. Yariv, Quantum Electronics, (Wiley, New York, 1989), Chap. 6, pp. 106–129.
  13. D. Zaleta, M. Larsson, W. Daschner, S. H. Lee, “Design methods for space-variant optical interconnections to achieve optimum power throughput,” Appl. Opt. 34, 2436–2447 (1995).
  14. R. Spence, R. S. Soin, Tolerance Design of Electronic Circuits (Addison-Wesley, Menlo Park, Calif., 1988).
  15. K. Singhal, J. F. Pinel, “Statistical design centering and tolerancing using parametric sampling,” IEEE Trans. Circuits Syst. CAS-28, 692–701 (1981).
  16. S. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).
  17. R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, “Reducing alignment and chromatic sensitivity of holographic optical interconnects with substrate-mode holograms,” Appl. Opt. 28, 4939–4944 (1989).

1995 (1)

1994 (2)

F. Sauer, J. Johns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).

S. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).

1993 (1)

1992 (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).

1989 (1)

1982 (1)

1981 (2)

R. H. Ginsberg, “Outline of tolerancing (from specification to toleranced drawings),” Opt. Eng. 20, 175–180 (1981).

K. Singhal, J. F. Pinel, “Statistical design centering and tolerancing using parametric sampling,” IEEE Trans. Circuits Syst. CAS-28, 692–701 (1981).

1970 (1)

Beech, R. S.

Belland, P.

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).

Crenn, J. P.

Daschner, W.

Dickson, L. D.

Feldblum, A. Y.

F. Sauer, J. Johns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).

Ghosh, A. J.

Ginsberg, R. H.

R. H. Ginsberg, “Outline of tolerancing (from specification to toleranced drawings),” Opt. Eng. 20, 175–180 (1981).

Hetherington, D.

Hinton, H. S.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).

Huang, Y. T.

Johns, J.

F. Sauer, J. Johns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).

Kato, M.

Koch, D. G.

D. G. Koch, “A statistical approach to lens tolerancing,” in Computer-Aided Optical Design, R. E. Fischer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.147, 71–82 (1978).

Kostuk, R. K.

Larsson, M.

Lee, S. H.

D. Zaleta, M. Larsson, W. Daschner, S. H. Lee, “Design methods for space-variant optical interconnections to achieve optimum power throughput,” Appl. Opt. 34, 2436–2447 (1995).

S. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).

D. Zaleta, S. H. Lee, “Design of general Gaussian beam system for free-space optical interconnects,” submitted to Opt. Lett.1995.

D. Zaleta, S. Patra, J. Ma, S. H. Lee, “Misalignment sensitivity analysis of planar optical interconnect systems,” in Optoelectronic Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2153, 180–193 (1994).

Ma, J.

S. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).

D. Zaleta, S. Patra, J. Ma, S. H. Lee, “Misalignment sensitivity analysis of planar optical interconnect systems,” in Optoelectronic Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2153, 180–193 (1994).

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).

Nijander, C. R.

F. Sauer, J. Johns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).

Ozguz, V. H.

S. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).

Patra, S.

S. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).

D. Zaleta, S. Patra, J. Ma, S. H. Lee, “Misalignment sensitivity analysis of planar optical interconnect systems,” in Optoelectronic Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2153, 180–193 (1994).

Pinel, J. F.

K. Singhal, J. F. Pinel, “Statistical design centering and tolerancing using parametric sampling,” IEEE Trans. Circuits Syst. CAS-28, 692–701 (1981).

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).

Sauer, F.

F. Sauer, J. Johns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).

Singhal, K.

K. Singhal, J. F. Pinel, “Statistical design centering and tolerancing using parametric sampling,” IEEE Trans. Circuits Syst. CAS-28, 692–701 (1981).

Smith, W. J.

W. J. Smith, “Fundamentals of establishing an optical tolerancing budget,” in Geomerical Optics, R. E. Fischer, W. H. Price, W. J. Smith, eds., Proc. Soc. Photo-Opt. Instrum. Eng.531, 196–204 (1985).

Soin, R. S.

R. Spence, R. S. Soin, Tolerance Design of Electronic Circuits (Addison-Wesley, Menlo Park, Calif., 1988).

Spence, R.

R. Spence, R. S. Soin, Tolerance Design of Electronic Circuits (Addison-Wesley, Menlo Park, Calif., 1988).

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).

Townsend, W. P.

F. Sauer, J. Johns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).

Yariv, A.

A. Yariv, Quantum Electronics, (Wiley, New York, 1989), Chap. 6, pp. 106–129.

Zaleta, D.

D. Zaleta, M. Larsson, W. Daschner, S. H. Lee, “Design methods for space-variant optical interconnections to achieve optimum power throughput,” Appl. Opt. 34, 2436–2447 (1995).

D. Zaleta, S. H. Lee, “Design of general Gaussian beam system for free-space optical interconnects,” submitted to Opt. Lett.1995.

D. Zaleta, S. Patra, J. Ma, S. H. Lee, “Misalignment sensitivity analysis of planar optical interconnect systems,” in Optoelectronic Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2153, 180–193 (1994).

Appl. Opt. (5)

IEEE Trans. Circuits Syst. (1)

K. Singhal, J. F. Pinel, “Statistical design centering and tolerancing using parametric sampling,” IEEE Trans. Circuits Syst. CAS-28, 692–701 (1981).

Opt. Eng. (3)

S. Patra, J. Ma, V. H. Ozguz, S. H. Lee, “Alignment issues in packaging for free-space optical interconnects,” Opt. Eng. 33, 1561–1570 (1994).

R. H. Ginsberg, “Outline of tolerancing (from specification to toleranced drawings),” Opt. Eng. 20, 175–180 (1981).

F. Sauer, J. Johns, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Refractive-diffractive micro-optics for permutation interconnects,” Opt. Eng. 33, 1550–1560 (1994).

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, 465–477 (1992).

Other (7)

D. Zaleta, S. Patra, J. Ma, S. H. Lee, “Misalignment sensitivity analysis of planar optical interconnect systems,” in Optoelectronic Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2153, 180–193 (1994).

D. Zaleta, S. H. Lee, “Design of general Gaussian beam system for free-space optical interconnects,” submitted to Opt. Lett.1995.

A. Yariv, Quantum Electronics, (Wiley, New York, 1989), Chap. 6, pp. 106–129.

R. Spence, R. S. Soin, Tolerance Design of Electronic Circuits (Addison-Wesley, Menlo Park, Calif., 1988).

G. E. Wise, ed., Selected Papers on Optical Tolerancing, Vol. MS-36 of SPIE Milestone Series, (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1991).

W. J. Smith, “Fundamentals of establishing an optical tolerancing budget,” in Geomerical Optics, R. E. Fischer, W. H. Price, W. J. Smith, eds., Proc. Soc. Photo-Opt. Instrum. Eng.531, 196–204 (1985).

D. G. Koch, “A statistical approach to lens tolerancing,” in Computer-Aided Optical Design, R. E. Fischer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.147, 71–82 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Conceptual drawing of final MCM-to-MCM optical interconnect configuration: CGH, computer-generated hologram; MCM's, multichip modules; PCB, printed circuit board.

Fig. 2.
Fig. 2.

Optical interconnect configuration under consideration.

Fig. 3.
Fig. 3.

Definitions of rotational misalignments: (a) α rotation, (b) β rotation, (c) γ rotation.

Fig. 4.
Fig. 4.

Alignment tolerance analysis and design flow chart.

Fig. 5.
Fig. 5.

Sensitivity of optical throughput to z ps longitudinal misalignment.

Fig. 6.
Fig. 6.

Sensitivityof optical throughput to αps rotational misalignment.

Fig. 7.
Fig. 7.

Sensitivity of optical throughput to wavelength variations.

Fig. 8.
Fig. 8.

General flow of standard Monte Carlo tolerance design.

Fig. 9.
Fig. 9.

Improved Monte Carlo tolerance design flow chart for which parametric sampling is used.

Tables (7)

Tables Icon

Table 1 List of the 22 Different Types of Tolerances Considered

Tables Icon

Table 2 Nominal Optical System Parameters used for Tolerancing Study

Tables Icon

Table 3 Initial Tolerances used in Passive-Element Tolerancing Design a

Tables Icon

Table 4 Values Assigned for Cost Function Determination

Tables Icon

Table 5 Comparison of Initial Tolerances and Cost Functions with the Optimized Tolerances and Cost Functions for the Passive-Element Tolerancing Design Run a

Tables Icon

Table 6 Summary of the Tolerancing Design Results on the Fabrication and the Manufacturing Tolerances for the System Analyzed

Tables Icon

Table 7 Comparison of Initial Tolerances and Cost Functions with the Optimized Tolerances and Cost Functions for the Active-Element Tolerancing Design Run a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P = π D eff 2 4 r 2 λ ,
Z = P   sin ( θ ) = π D 2 4 r 2 λ cos 2 ( θ ) sin ( θ ) ,
P = π 8 ω 0 2 ( erf { 2 [ ( a p x / 2 x off ) / ω x ] }             + erf { 2 [ ( a p x / 2 x off ) / ω x ] } )             × ( erf { 2 [ ( a p x / 2 y off ) / ω y ] }                        + erf { 2 [ ( a p y / 2 y off ) / ω y ] } ) ,
t i = 3 σ i .
Y ^ = 1 N j = 1 N z ( P j )
Cost = 1 Y ^ i ( α i + β i t i ) ,
Y ^ = 1 N j = 1 N [ z ( p j ) ϕ ( P j , T j ) ϕ e ( P j ) ] ,
Y ^ = 1 N j = 1 N z j W j + b ^ ( 1 1 N j = 1 N W j ) ,
b ^ = ( j = 1 N z j W j 2 ) 1 N ( j = 1 N z j W j ) ( j = 1 N W j ) ( j = 1 N W j 2 ) 1 N ( j = 1 N W j ) 2 ,

Metrics