Abstract

The theoretical modeling of a novel topology for scalable optical interconnection networks, called optical multimesh hypercube (OMMH), is developed to predict size, bit rate, bit-error rate, power budget, noise, efficiency, interconnect distance, pixel density, and misalignment sensitivity. The numerical predictions are validated with experimental data from commercially available products to assess the effects of various thermal, system, and geometric parameters on the behavior of the sample model. OMMH is a scalable network architecture that combines positive features of the hypercube (small diameter, regular, symmetric, and fault tolerant) and the mesh (constant node degree and size scalability). The OMMH is implemented by a free-space imaging system incorporated with a space-invariant hologram for the hypercube links and fiber optics to provide the mesh connectivity. The results of this work show that the free-space links can operate at 368 Mbits/s and the fiber-based links at 228 Mbits/s for a bit-error rate of 10−17per channel. The predicted system size for 32 nodes in the OMMH is 4.16 mm × 4.16 mm × 3.38 cm. Using 16-bit, bit-parallel transmission per node, the system can operate at a bit rate of up to 5.88 Gbits/s for a size of 1.04 cm × 1.04 cm × 3.38 cm.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Louri, H. Sung, “Efficient implementation methodology for three-dimensional space-invariant hypercube-based free-space optical interconnection networks,” Appl. Opt. 32, 7200–7209 (1993).
  2. A. Louri, H. Sung, “Scalable optical hypercube-based interconnection network for massively parallel computing,” Appl. Opt. 33, 7588–7598 (1994).
  3. A. Louri, H. Sung, “An optical multi-mesh hypercube: a scalable optical interconnection network for massively parallel computing,” J. Lightwave Technol. 12, 704–716 (1994).
  4. S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
  5. J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 202–212.
  6. G. Olbright, “VCSELs could revolutionize optical communications,” Photon. Spectra, 29, 98–101 (1995).
  7. S. Kawai, H. Kurita, I. Ogura, “Optical switching networks using free-space wavelength-division multiplexing interconnections,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 81–84 (1995).
  8. I. Ogura, K. Kurihara, S. Kawai, M. Kahita, K. Kasahara, “A multiple wavelength vertical-cavity surface-emitting laser (VCSEL) array for optical interconnection,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 22–27 (1995).
  9. A. E. Willner, C. H. Chang-Hasnain, J. E. Leight, “2-D WDM optical interconnections using multiple-wavelength VCSELs for simultaneous and reconfigurable communication among many planes,” IEEE Photon. Technol. Lett. 5,838–841 (1993).
  10. Y. Motegi, A. Takai, “Optical interconnection modules utilizing fiber-optic parallel transmission to enhance information throughput,” Hitachi Rev. 43, 79–82 (1994).
  11. A. Takai, H. Abe, T. Kato, “Subsystem optical interconnections using long wavelength laser diode arrays and singlemode fiber arrays,” J. Lightwave Technol. 12, 260–270 (1994).
  12. G. Nakagawa, K. Miura, M. Makiuchi, M. Yano, “Highly efficient coupling between LD array and optical fiber array using Si microlens array,” IEEE Photon. Technol. Lett. 5, 1056–1058 (1993).
  13. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
  14. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  15. B. Acklin, J. Jahns, “Packaging considerations for planar optical interconnection systems,” Appl. Opt. 33, 1391–1397 (1994).
  16. R. D. Smith, S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communications, H. Kressel, ed. (Springer-Verlag, Heidelberg, 1987), Chap. 4.
  17. T. V. Moui, “Receiver design for high-speed optical fiber systems,” J. Lightwave Technol. 243–267 (1984).
  18. F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching: Volume II, Systems, J. E. Midwinter, ed. (Academic, New York, 1993), Chap. 4.
  19. S. Sinzinger, J. Jahns, “Variations of the hybrid imaging concept for optical computing applications,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 183–185.
  20. J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).
  21. R. S. L. J. Camp, M. R. Feldman, “Guided-wave and free-space optical interconnects for parallel processing systems: a comparison,” Appl. Opt. 33, 6168–6180 (1994).

1995 (3)

G. Olbright, “VCSELs could revolutionize optical communications,” Photon. Spectra, 29, 98–101 (1995).

S. Kawai, H. Kurita, I. Ogura, “Optical switching networks using free-space wavelength-division multiplexing interconnections,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 81–84 (1995).

I. Ogura, K. Kurihara, S. Kawai, M. Kahita, K. Kasahara, “A multiple wavelength vertical-cavity surface-emitting laser (VCSEL) array for optical interconnection,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 22–27 (1995).

1994 (8)

Y. Motegi, A. Takai, “Optical interconnection modules utilizing fiber-optic parallel transmission to enhance information throughput,” Hitachi Rev. 43, 79–82 (1994).

A. Takai, H. Abe, T. Kato, “Subsystem optical interconnections using long wavelength laser diode arrays and singlemode fiber arrays,” J. Lightwave Technol. 12, 260–270 (1994).

A. Louri, H. Sung, “Scalable optical hypercube-based interconnection network for massively parallel computing,” Appl. Opt. 33, 7588–7598 (1994).

A. Louri, H. Sung, “An optical multi-mesh hypercube: a scalable optical interconnection network for massively parallel computing,” J. Lightwave Technol. 12, 704–716 (1994).

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).

B. Acklin, J. Jahns, “Packaging considerations for planar optical interconnection systems,” Appl. Opt. 33, 1391–1397 (1994).

J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).

R. S. L. J. Camp, M. R. Feldman, “Guided-wave and free-space optical interconnects for parallel processing systems: a comparison,” Appl. Opt. 33, 6168–6180 (1994).

1993 (3)

A. Louri, H. Sung, “Efficient implementation methodology for three-dimensional space-invariant hypercube-based free-space optical interconnection networks,” Appl. Opt. 32, 7200–7209 (1993).

G. Nakagawa, K. Miura, M. Makiuchi, M. Yano, “Highly efficient coupling between LD array and optical fiber array using Si microlens array,” IEEE Photon. Technol. Lett. 5, 1056–1058 (1993).

A. E. Willner, C. H. Chang-Hasnain, J. E. Leight, “2-D WDM optical interconnections using multiple-wavelength VCSELs for simultaneous and reconfigurable communication among many planes,” IEEE Photon. Technol. Lett. 5,838–841 (1993).

1992 (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).

1984 (1)

T. V. Moui, “Receiver design for high-speed optical fiber systems,” J. Lightwave Technol. 243–267 (1984).

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Abe, H.

A. Takai, H. Abe, T. Kato, “Subsystem optical interconnections using long wavelength laser diode arrays and singlemode fiber arrays,” J. Lightwave Technol. 12, 260–270 (1994).

Acklin, B.

Brown-Goebeler, K.

J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).

Camp, R. S. L. J.

Chang-Hasnain, C. H.

A. E. Willner, C. H. Chang-Hasnain, J. E. Leight, “2-D WDM optical interconnections using multiple-wavelength VCSELs for simultaneous and reconfigurable communication among many planes,” IEEE Photon. Technol. Lett. 5,838–841 (1993).

Chen, R. T.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).

Feldblum, A.

J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).

Feldman, M. R.

Garrett, L.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).

Gerold, D.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).

Hinton, H. S.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).

Jahns, J.

J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).

B. Acklin, J. Jahns, “Packaging considerations for planar optical interconnection systems,” Appl. Opt. 33, 1391–1397 (1994).

S. Sinzinger, J. Jahns, “Variations of the hybrid imaging concept for optical computing applications,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 183–185.

Kahita, M.

I. Ogura, K. Kurihara, S. Kawai, M. Kahita, K. Kasahara, “A multiple wavelength vertical-cavity surface-emitting laser (VCSEL) array for optical interconnection,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 22–27 (1995).

Kasahara, K.

I. Ogura, K. Kurihara, S. Kawai, M. Kahita, K. Kasahara, “A multiple wavelength vertical-cavity surface-emitting laser (VCSEL) array for optical interconnection,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 22–27 (1995).

Kato, T.

A. Takai, H. Abe, T. Kato, “Subsystem optical interconnections using long wavelength laser diode arrays and singlemode fiber arrays,” J. Lightwave Technol. 12, 260–270 (1994).

Kawai, S.

S. Kawai, H. Kurita, I. Ogura, “Optical switching networks using free-space wavelength-division multiplexing interconnections,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 81–84 (1995).

I. Ogura, K. Kurihara, S. Kawai, M. Kahita, K. Kasahara, “A multiple wavelength vertical-cavity surface-emitting laser (VCSEL) array for optical interconnection,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 22–27 (1995).

Kurihara, K.

I. Ogura, K. Kurihara, S. Kawai, M. Kahita, K. Kasahara, “A multiple wavelength vertical-cavity surface-emitting laser (VCSEL) array for optical interconnection,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 22–27 (1995).

Kurita, H.

S. Kawai, H. Kurita, I. Ogura, “Optical switching networks using free-space wavelength-division multiplexing interconnections,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 81–84 (1995).

Leight, J. E.

A. E. Willner, C. H. Chang-Hasnain, J. E. Leight, “2-D WDM optical interconnections using multiple-wavelength VCSELs for simultaneous and reconfigurable communication among many planes,” IEEE Photon. Technol. Lett. 5,838–841 (1993).

Li, M. M.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).

Louri, A.

Makiuchi, M.

G. Nakagawa, K. Miura, M. Makiuchi, M. Yano, “Highly efficient coupling between LD array and optical fiber array using Si microlens array,” IEEE Photon. Technol. Lett. 5, 1056–1058 (1993).

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).

F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching: Volume II, Systems, J. E. Midwinter, ed. (Academic, New York, 1993), Chap. 4.

Miura, K.

G. Nakagawa, K. Miura, M. Makiuchi, M. Yano, “Highly efficient coupling between LD array and optical fiber array using Si microlens array,” IEEE Photon. Technol. Lett. 5, 1056–1058 (1993).

Motegi, Y.

Y. Motegi, A. Takai, “Optical interconnection modules utilizing fiber-optic parallel transmission to enhance information throughput,” Hitachi Rev. 43, 79–82 (1994).

Moui, T. V.

T. V. Moui, “Receiver design for high-speed optical fiber systems,” J. Lightwave Technol. 243–267 (1984).

Nakagawa, G.

G. Nakagawa, K. Miura, M. Makiuchi, M. Yano, “Highly efficient coupling between LD array and optical fiber array using Si microlens array,” IEEE Photon. Technol. Lett. 5, 1056–1058 (1993).

Neff, J.

J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 202–212.

Nijander, C.

J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).

Ogura, I.

S. Kawai, H. Kurita, I. Ogura, “Optical switching networks using free-space wavelength-division multiplexing interconnections,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 81–84 (1995).

I. Ogura, K. Kurihara, S. Kawai, M. Kahita, K. Kasahara, “A multiple wavelength vertical-cavity surface-emitting laser (VCSEL) array for optical interconnection,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 22–27 (1995).

Olbright, G.

G. Olbright, “VCSELs could revolutionize optical communications,” Photon. Spectra, 29, 98–101 (1995).

Personick, S. D.

R. D. Smith, S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communications, H. Kressel, ed. (Springer-Verlag, Heidelberg, 1987), Chap. 4.

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).

Sauer, F.

J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).

Sinzinger, S.

S. Sinzinger, J. Jahns, “Variations of the hybrid imaging concept for optical computing applications,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 183–185.

Smith, R. D.

R. D. Smith, S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communications, H. Kressel, ed. (Springer-Verlag, Heidelberg, 1987), Chap. 4.

Sung, H.

Takai, A.

Y. Motegi, A. Takai, “Optical interconnection modules utilizing fiber-optic parallel transmission to enhance information throughput,” Hitachi Rev. 43, 79–82 (1994).

A. Takai, H. Abe, T. Kato, “Subsystem optical interconnections using long wavelength laser diode arrays and singlemode fiber arrays,” J. Lightwave Technol. 12, 260–270 (1994).

Tang, S.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).

Tell, B.

J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).

Townsend, W.

J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).

Willner, A. E.

A. E. Willner, C. H. Chang-Hasnain, J. E. Leight, “2-D WDM optical interconnections using multiple-wavelength VCSELs for simultaneous and reconfigurable communication among many planes,” IEEE Photon. Technol. Lett. 5,838–841 (1993).

Yano, M.

G. Nakagawa, K. Miura, M. Makiuchi, M. Yano, “Highly efficient coupling between LD array and optical fiber array using Si microlens array,” IEEE Photon. Technol. Lett. 5, 1056–1058 (1993).

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Hitachi Rev. (1)

Y. Motegi, A. Takai, “Optical interconnection modules utilizing fiber-optic parallel transmission to enhance information throughput,” Hitachi Rev. 43, 79–82 (1994).

IEEE Photon. Technol. Lett. (2)

G. Nakagawa, K. Miura, M. Makiuchi, M. Yano, “Highly efficient coupling between LD array and optical fiber array using Si microlens array,” IEEE Photon. Technol. Lett. 5, 1056–1058 (1993).

A. E. Willner, C. H. Chang-Hasnain, J. E. Leight, “2-D WDM optical interconnections using multiple-wavelength VCSELs for simultaneous and reconfigurable communication among many planes,” IEEE Photon. Technol. Lett. 5,838–841 (1993).

Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. (2)

S. Kawai, H. Kurita, I. Ogura, “Optical switching networks using free-space wavelength-division multiplexing interconnections,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 81–84 (1995).

I. Ogura, K. Kurihara, S. Kawai, M. Kahita, K. Kasahara, “A multiple wavelength vertical-cavity surface-emitting laser (VCSEL) array for optical interconnection,” Inst. Electron. Inf. Commun. Eng. (Jpn) Trans. Electron. E78-C, 22–27 (1995).

J. Lightwave Technol (1)

T. V. Moui, “Receiver design for high-speed optical fiber systems,” J. Lightwave Technol. 243–267 (1984).

J. Lightwave Technol. (3)

A. Takai, H. Abe, T. Kato, “Subsystem optical interconnections using long wavelength laser diode arrays and singlemode fiber arrays,” J. Lightwave Technol. 12, 260–270 (1994).

A. Louri, H. Sung, “An optical multi-mesh hypercube: a scalable optical interconnection network for massively parallel computing,” J. Lightwave Technol. 12, 704–716 (1994).

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).

Opt. Commun. (1)

J. Jahns, F. Sauer, B. Tell, K. Brown-Goebeler, A. Feldblum, W. Townsend, C. Nijander, “Parallel optical interconnections using surface-emitting microlasers and a hybrid imaging system,” Opt. Commun. 109, 328–337 (1994).

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).

Photon. Spectra (1)

G. Olbright, “VCSELs could revolutionize optical communications,” Photon. Spectra, 29, 98–101 (1995).

Other (4)

J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections (Institute of Electrical and Electronic Engineers, New York, 1994), pp. 202–212.

F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching: Volume II, Systems, J. E. Midwinter, ed. (Academic, New York, 1993), Chap. 4.

S. Sinzinger, J. Jahns, “Variations of the hybrid imaging concept for optical computing applications,” in Optical Computing, Vol. 10 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 183–185.

R. D. Smith, S. D. Personick, “Receiver design for optical fiber communication systems,” in Semiconductor Devices for Optical Communications, H. Kressel, ed. (Springer-Verlag, Heidelberg, 1987), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Sample OMMH (2, 2, 3): four hypercubes, eight meshes, and 32 nodes.

Fig. 2.
Fig. 2.

(a) Pixel density versus output laser power, (b) required laser power to achieve a desired bit rate, (c) power incident upon detector Pd versus laser output power Pl .Gb/s, gigabits per second.

Fig. 3.
Fig. 3.

(a) Bit rate versus capacitive effects at the receiver, (b) required switching energy versus capacitance at the receiver.

Fig. 4.
Fig. 4.

Three-dimensional view of OMMH (2, 2, 3) that shows plane L and plane R interconnected by four space-invariant optical interconnection modules. The free-space links (top) are shown separated from the mesh links (bottom) for clarity.

Fig. 5.
Fig. 5.

Model for one hypercube that shows one space-invariant optical interconnection module.

Fig. 6.
Fig. 6.

(a) Beam-spot radius on lens l1 versus interconnect distance d1 l1, (b) beam-spot radius on lens l1 versus focal length fl of lens l1.

Fig. 7.
Fig. 7.

(a) Interconnect distance d1 l1 versus focal length fl of lens l1, (b) interconnect distance d2 l1 versus focal length fl of lens l1, (c) total interconnect distance versus (f/#) L .

Fig. 8.
Fig. 8.

(a) Angles of diffracted orders versus (f/#) L , (b) grating period ∧ versus f-number (f/#) L for different values of Dl , the diameter of lens l1, (c) angular misalignment tolerance versus f-number of lens L1 for different values of the lens diameter and separation.

Fig. 9.
Fig. 9.

Model for the mesh interconnects.

Fig. 10.
Fig. 10.

Model of a single bidirectional link for the mesh interconnects.

Fig. 11.
Fig. 11.

(a) Bit rate versus lateral misalignment for single and multimode fibers, (b) bit rate versus angular misalignment for single and multimode fibers, (c) bit rate versus longitudinal misalignment for single and multimode fibers.

Tables (5)

Tables Icon

Table 1 Receiver Design Parameters

Tables Icon

Table 2 Calculated System Parameters for the Free-Space Links in the OMMH

Tables Icon

Table 3 Typical Fiber-Link Power Budget

Tables Icon

Table 4 System Parameters for the Fiber Links in the OMMH

Tables Icon

Table 5 Free-Space Link Power Budget

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

ω 2 ( z ) = ω 0 2 [ 1 + ( λ z π ω 0 2 ) 2 ] ,
d 1 = f + ω 01 ω 02 [ f 2 ( π λ ω 01 ω 02 ) 2 ] 1 / 2 , d 2 = f + ω 02 ω 01 [ f 2 ( π λ ω 01 ω 02 ) 2 ] 1 / 2 ,
ω f a = 0 . 65 + ( 1 . 619 / V 1 . 5 ) + ( 2 . 879 / V 6 ) ,
V = [ 2 π a λ ( n 1 2 n 2 2 ) 1 / 2 ] = 2 π a λ NA ,
P dissip P th + P l ( 1 η EO ) η EO ,
η cd = 1 exp ( 2 r 2 ω 2 ) .
i d = q η d P d h v ,
P l = 1 + r 1 r Q h c λ q i NA 2 1 / 2 ( N η sys η d ) ,
i NA 2 = 4 k T R f I 2 B + 2 q I L I 2 B + 4 k T Γ g m ( 2 π C T ) 2 f c I f B 2 + 4 k T Γ g m ( 2 π C T ) 2 I 3 B 3 ,
P d = E sw τ = C d V τ R ,
R = η d λ h c = η d λ ( μm ) 1 . 2424 ,
f L = ( f / # ) L ( 3 ρ s + D l ) ,
η s y s = P d / P l
η tot = η l η c 2 η h η cd η d ,
η d = 1 exp ( α d ) ,
Λ ( sin   θ d sin   θ i ) = m λ ,
tan   θ i = ρ s 2 f L = ρ s 2 ( 3 ρ s + D l ) ( f / # ) L
tan   θ d 0 = tan   θ i ,
tan   θ d + = ρ s 2 f L = ρ s 2 ( 3 ρ s + D l ) ( f / # ) L
θ d = sin 1 [ m λ Λ sin ( θ i ) ] .
f L ( tan   θ d tan   θ d )    0 . 6 ω l .
ω l r l 1 . 52 = 2 . 12 ω l 1 . 52 = 1 . 39 ω l .
d  θ d = m Λcos   θ d .
η sys = η fd η sf Γ ( d ) ,
Γ ( d ) = log 1 ( α d d / 10 ) ,
L lat = 10   log { exp [ ( Δ L lat ω f ) 2 ] } .
L lat = 10   log { 2 π cos 1 ( Δ L lat 2 a ) Δ L lat π a [ 1 ( Δ L lat 2 a ) 2 ] 1 / 2 } .
L ang = 10   log { exp [ ( π n 2 ω f Δθ λ ) 2 ] } ,
L ang = 10   log ( 1 tanΔθ πNA ) .
L long = 10   log 4 ( 4 Z 2 + 1 ) ( 4 Z 2 + 2 ) 2 + 4 Z 2 ,
Z = Δ L long λ 2 π n 2 ω f 2
L long = 10   log ( 1 Δ L long NA 4 a ) .

Metrics