Abstract

We demonstrate a refractive micr-optical system by using ion-exchange microlenses and microprisms, which are combined to generate a superposition of two shifted images. The microlenses, fabricated with field-assisted Ag–Na exchange, achieve diffraction-limited imaging with a single-lens system and with a double-lens system for a field of 800 μm × 800 μm. Furthermore, we demonstrate cascading of two separate differential-pair optical-thyristor arrays by transcribing the information of a source array onto a second destination array.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fukui, K. Kitayama, “Image logic algebra and its optical implementations,” Appl. Opt. 31, 581–591 (1992).
  2. A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).
  3. J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).
  4. K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).
  5. K.-H. Brenner, “Techniques for integrating 3D-optical systems,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1544, 263–270 (1991).
  6. J. Jahns, B. Acklin, “Integrated planar optical imaging system with high interconnection density” Opt. Lett. 18, 1594–1596 (1993).
  7. J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).
  8. J. Tanida, Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).
  9. J. Tanida, D. Miyasaki, Y. Ichioka, “H-OPALS: hybrid optical parallel array logic system,” in Topical Meeting on Optical Computing, Z. I. Alferov, J. W. Goodman, A. L. Mikaelian, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1806, 568–574 (1992).
  10. G. Lohmann, K.-H. Brenner, “Digital optical processor based on cellular automata,” in Digital Image Processingand Computer Graphics, E. Wenger, L. Dimitrov, eds., (Oldenburg, Munich, 1991), pp. 152–172.
  11. K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054 (1986).
  12. K.-H. Brenner, “Programmable optical processor based on symbolic substitution,” Appl. Opt. 27, 1687–1691 (1988).
  13. D. Fey, K.-H. Brenner, “Digital optical arithmetic based on systolic arrays and symbolic substitution logic,” Opt. Comput. 1, 153–167 (1990).
  14. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
  15. D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist” J. Meas. Sci. Technol. 1, 759–766 (1990).
  16. S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer” Opt. Eng. 32, 1322–1324 (1993).
  17. M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
  18. J. Bähr, K.-H. Brenner, S. Sinzinger, W. Singer, T. Spick, M. Testorf, “Index-distributed planar microlenses for the three-dimensional micro-optics fabricated by silver-sodium ion exchange inBGG35 substrates,” Appl. Opt. 33, 5919–5924 (1994).
  19. J. Bähr, K.-H. Brenner, “Realisation of 0.2-N.A. microlenses by field-assisted Ag–Na ion-exchange” presented at the European Optical Society Topical Meeting on Microlens Arrays, Teddington, U.K., May 1995.
  20. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–36 (1986).
  21. K.-H. Brenner, M. Kufner, S. Kumer, J. Moisel, A. Müller, S. Sinzinger, M. Testorf, J. Gottert, J. Mohr, “Application of three-dimensional micro-optical components formed by lithography, electroforming and plastic molding,” Appl. Opt. 32, 6464–6469 (1993).
  22. J. Moisel, K.-H. Brenner, “Demonstration of a 3D integrated refractive microsystem,” presented at the International Conference on Optical Computing, Edinburgh, U.K., 22–25 August 1994.
  23. M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, G. Borghs, “Down-scaling differential pairs of depleted optical thyristors” IEEE Photon. Technol. Lett. 7, 646–648 (1995).
  24. P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).
  25. P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Differential optical PnpN switch operating at 16 Mhz with 250 fJ optical input energy” Appl. Phys. Lett. 65, 19–21 (1994).

1995 (1)

M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, G. Borghs, “Down-scaling differential pairs of depleted optical thyristors” IEEE Photon. Technol. Lett. 7, 646–648 (1995).

1994 (3)

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Differential optical PnpN switch operating at 16 Mhz with 250 fJ optical input energy” Appl. Phys. Lett. 65, 19–21 (1994).

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).

J. Bähr, K.-H. Brenner, S. Sinzinger, W. Singer, T. Spick, M. Testorf, “Index-distributed planar microlenses for the three-dimensional micro-optics fabricated by silver-sodium ion exchange inBGG35 substrates,” Appl. Opt. 33, 5919–5924 (1994).

1993 (3)

1992 (4)

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).

P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).

M. Fukui, K. Kitayama, “Image logic algebra and its optical implementations,” Appl. Opt. 31, 581–591 (1992).

A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).

1990 (3)

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist” J. Meas. Sci. Technol. 1, 759–766 (1990).

D. Fey, K.-H. Brenner, “Digital optical arithmetic based on systolic arrays and symbolic substitution logic,” Opt. Comput. 1, 153–167 (1990).

J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).

1988 (2)

1986 (3)

J. Tanida, Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).

K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054 (1986).

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–36 (1986).

1982 (1)

Acklin, B.

Bähr, J.

J. Bähr, K.-H. Brenner, S. Sinzinger, W. Singer, T. Spick, M. Testorf, “Index-distributed planar microlenses for the three-dimensional micro-optics fabricated by silver-sodium ion exchange inBGG35 substrates,” Appl. Opt. 33, 5919–5924 (1994).

J. Bähr, K.-H. Brenner, “Realisation of 0.2-N.A. microlenses by field-assisted Ag–Na ion-exchange” presented at the European Optical Society Topical Meeting on Microlens Arrays, Teddington, U.K., May 1995.

Becker, E. W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–36 (1986).

Borghs, G.

M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, G. Borghs, “Down-scaling differential pairs of depleted optical thyristors” IEEE Photon. Technol. Lett. 7, 646–648 (1995).

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Differential optical PnpN switch operating at 16 Mhz with 250 fJ optical input energy” Appl. Phys. Lett. 65, 19–21 (1994).

P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).

Brenner, K.-H.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).

J. Bähr, K.-H. Brenner, S. Sinzinger, W. Singer, T. Spick, M. Testorf, “Index-distributed planar microlenses for the three-dimensional micro-optics fabricated by silver-sodium ion exchange inBGG35 substrates,” Appl. Opt. 33, 5919–5924 (1994).

K.-H. Brenner, M. Kufner, S. Kumer, J. Moisel, A. Müller, S. Sinzinger, M. Testorf, J. Gottert, J. Mohr, “Application of three-dimensional micro-optical components formed by lithography, electroforming and plastic molding,” Appl. Opt. 32, 6464–6469 (1993).

D. Fey, K.-H. Brenner, “Digital optical arithmetic based on systolic arrays and symbolic substitution logic,” Opt. Comput. 1, 153–167 (1990).

K.-H. Brenner, “Programmable optical processor based on symbolic substitution,” Appl. Opt. 27, 1687–1691 (1988).

K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054 (1986).

G. Lohmann, K.-H. Brenner, “Digital optical processor based on cellular automata,” in Digital Image Processingand Computer Graphics, E. Wenger, L. Dimitrov, eds., (Oldenburg, Munich, 1991), pp. 152–172.

K.-H. Brenner, “Techniques for integrating 3D-optical systems,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1544, 263–270 (1991).

J. Bähr, K.-H. Brenner, “Realisation of 0.2-N.A. microlenses by field-assisted Ag–Na ion-exchange” presented at the European Optical Society Topical Meeting on Microlens Arrays, Teddington, U.K., May 1995.

J. Moisel, K.-H. Brenner, “Demonstration of a 3D integrated refractive microsystem,” presented at the International Conference on Optical Computing, Edinburgh, U.K., 22–25 August 1994.

Connell, G. A. N.

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist” J. Meas. Sci. Technol. 1, 759–766 (1990).

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist” J. Meas. Sci. Technol. 1, 759–766 (1990).

Eckert, W.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).

Ehrfeld, W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–36 (1986).

Fey, D.

D. Fey, K.-H. Brenner, “Digital optical arithmetic based on systolic arrays and symbolic substitution logic,” Opt. Comput. 1, 153–167 (1990).

Fukui, M.

Gottert, J.

Hagmann, P.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–36 (1986).

Haselbeck, S.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer” Opt. Eng. 32, 1322–1324 (1993).

Hayes, R. E.

P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).

Heremans, P.

M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, G. Borghs, “Down-scaling differential pairs of depleted optical thyristors” IEEE Photon. Technol. Lett. 7, 646–648 (1995).

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Differential optical PnpN switch operating at 16 Mhz with 250 fJ optical input energy” Appl. Phys. Lett. 65, 19–21 (1994).

P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).

Huang, A.

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist” J. Meas. Sci. Technol. 1, 759–766 (1990).

Ichioka, Y.

J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).

J. Tanida, Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).

J. Tanida, D. Miyasaki, Y. Ichioka, “H-OPALS: hybrid optical parallel array logic system,” in Topical Meeting on Optical Computing, Z. I. Alferov, J. W. Goodman, A. L. Mikaelian, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1806, 568–574 (1992).

Iga, K.

Jahns, J.

J. Jahns, B. Acklin, “Integrated planar optical imaging system with high interconnection density” Opt. Lett. 18, 1594–1596 (1993).

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).

Kitayama, K.

Knüpfer, B.

M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, G. Borghs, “Down-scaling differential pairs of depleted optical thyristors” IEEE Photon. Technol. Lett. 7, 646–648 (1995).

Kufner, M.

Kuijk, M.

M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, G. Borghs, “Down-scaling differential pairs of depleted optical thyristors” IEEE Photon. Technol. Lett. 7, 646–648 (1995).

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Differential optical PnpN switch operating at 16 Mhz with 250 fJ optical input energy” Appl. Phys. Lett. 65, 19–21 (1994).

P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).

Kumer, S.

Lohmann, G.

G. Lohmann, K.-H. Brenner, “Digital optical processor based on cellular automata,” in Digital Image Processingand Computer Graphics, E. Wenger, L. Dimitrov, eds., (Oldenburg, Munich, 1991), pp. 152–172.

Louri, A.

Maner, A.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–36 (1986).

Miyasaki, D.

J. Tanida, D. Miyasaki, Y. Ichioka, “H-OPALS: hybrid optical parallel array logic system,” in Topical Meeting on Optical Computing, Z. I. Alferov, J. W. Goodman, A. L. Mikaelian, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1806, 568–574 (1992).

Mohr, J.

Moisel, J.

K.-H. Brenner, M. Kufner, S. Kumer, J. Moisel, A. Müller, S. Sinzinger, M. Testorf, J. Gottert, J. Mohr, “Application of three-dimensional micro-optical components formed by lithography, electroforming and plastic molding,” Appl. Opt. 32, 6464–6469 (1993).

J. Moisel, K.-H. Brenner, “Demonstration of a 3D integrated refractive microsystem,” presented at the International Conference on Optical Computing, Edinburgh, U.K., 22–25 August 1994.

Morgan, R. A.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).

Müller, A.

Munchmeyer, D.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–36 (1986).

Nakagawa, J.

Nguyen, H. N.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).

Oikawa, M.

Passon, C.

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).

Popovic, Z. D.

Schreiber, H.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer” Opt. Eng. 32, 1322–1324 (1993).

Schwider, J.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer” Opt. Eng. 32, 1322–1324 (1993).

Singer, W.

Sinzinger, S.

Spick, T.

Sprague, R. A.

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist” J. Meas. Sci. Technol. 1, 759–766 (1990).

Streibl, N.

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer” Opt. Eng. 32, 1322–1324 (1993).

K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054 (1986).

Suda, D. A.

P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).

Tanida, J.

J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).

J. Tanida, Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).

J. Tanida, D. Miyasaki, Y. Ichioka, “H-OPALS: hybrid optical parallel array logic system,” in Topical Meeting on Optical Computing, Z. I. Alferov, J. W. Goodman, A. L. Mikaelian, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1806, 568–574 (1992).

Testorf, M.

Vounckx, R.

M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, G. Borghs, “Down-scaling differential pairs of depleted optical thyristors” IEEE Photon. Technol. Lett. 7, 646–648 (1995).

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Differential optical PnpN switch operating at 16 Mhz with 250 fJ optical input energy” Appl. Phys. Lett. 65, 19–21 (1994).

P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).

Walker, J. A.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).

Walker, S. J.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).

Wong, Y. M.

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).

Yagyu, E.

Appl. Opt. (10)

M. Fukui, K. Kitayama, “Image logic algebra and its optical implementations,” Appl. Opt. 31, 581–591 (1992).

A. Louri, “Optical content-addressable parallel processor: architecture, algorithms, and design concepts,” Appl. Opt. 31, 3241–3258 (1992).

J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).

J. Tanida, Y. Ichioka, “OPALS: optical parallel array logic system,” Appl. Opt. 25, 1565–1570 (1986).

K.-H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054 (1986).

K.-H. Brenner, “Programmable optical processor based on symbolic substitution,” Appl. Opt. 27, 1687–1691 (1988).

Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).

M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).

J. Bähr, K.-H. Brenner, S. Sinzinger, W. Singer, T. Spick, M. Testorf, “Index-distributed planar microlenses for the three-dimensional micro-optics fabricated by silver-sodium ion exchange inBGG35 substrates,” Appl. Opt. 33, 5919–5924 (1994).

K.-H. Brenner, M. Kufner, S. Kumer, J. Moisel, A. Müller, S. Sinzinger, M. Testorf, J. Gottert, J. Mohr, “Application of three-dimensional micro-optical components formed by lithography, electroforming and plastic molding,” Appl. Opt. 32, 6464–6469 (1993).

Appl. Phys. Lett. (2)

P. Heremans, M. Kuijk, D. A. Suda, R. Vounckx, R. E. Hayes, G. Borghs, “Fast turn-off of two terminal double heterojunction optical thyristors” Appl. Phys. Lett. 61, 1326–1328 (1992).

P. Heremans, M. Kuijk, R. Vounckx, G. Borghs, “Differential optical PnpN switch operating at 16 Mhz with 250 fJ optical input energy” Appl. Phys. Lett. 65, 19–21 (1994).

IEEE Photon. Technol. Lett. (2)

M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, G. Borghs, “Down-scaling differential pairs of depleted optical thyristors” IEEE Photon. Technol. Lett. 7, 646–648 (1995).

J. Jahns, R. A. Morgan, H. N. Nguyen, J. A. Walker, S. J. Walker, Y. M. Wong, “Hybrid integration of surface-emitting microlaser chip and planar optics substrate for interconnection applications” IEEE Photon. Technol. Lett. 4, 1369–1372 (1992).

J. Meas. Sci. Technol (1)

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist” J. Meas. Sci. Technol. 1, 759–766 (1990).

Microelectron. Eng. (1)

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming and plastic moulding (LIGA process),” Microelectron. Eng. 4, 35–36 (1986).

Opt. Comput. (1)

D. Fey, K.-H. Brenner, “Digital optical arithmetic based on systolic arrays and symbolic substitution logic,” Opt. Comput. 1, 153–167 (1990).

Opt. Eng. (1)

S. Haselbeck, H. Schreiber, J. Schwider, N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer” Opt. Eng. 32, 1322–1324 (1993).

Opt. Laser Technol. (1)

K.-H. Brenner, W. Eckert, C. Passon, “Demonstration of an optical pipeline adder and design concepts for its microintegration,” Opt. Laser Technol. 26, 229–237 (1994).

Opt. Lett. (1)

Other (5)

J. Tanida, D. Miyasaki, Y. Ichioka, “H-OPALS: hybrid optical parallel array logic system,” in Topical Meeting on Optical Computing, Z. I. Alferov, J. W. Goodman, A. L. Mikaelian, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1806, 568–574 (1992).

G. Lohmann, K.-H. Brenner, “Digital optical processor based on cellular automata,” in Digital Image Processingand Computer Graphics, E. Wenger, L. Dimitrov, eds., (Oldenburg, Munich, 1991), pp. 152–172.

K.-H. Brenner, “Techniques for integrating 3D-optical systems,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1544, 263–270 (1991).

J. Moisel, K.-H. Brenner, “Demonstration of a 3D integrated refractive microsystem,” presented at the International Conference on Optical Computing, Edinburgh, U.K., 22–25 August 1994.

J. Bähr, K.-H. Brenner, “Realisation of 0.2-N.A. microlenses by field-assisted Ag–Na ion-exchange” presented at the European Optical Society Topical Meeting on Microlens Arrays, Teddington, U.K., May 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Fabrication steps for embossing and casting microprisms.

Fig. 2.
Fig. 2.

(a) Differential-pair photothyristor; (b) applied voltages for transcribing from an emitting array to a detector array; (c) voltage curves for symmetry transcription; (d) differential pair on glass plate, obtained by the epitaxial lift-off technique.

Fig. 3.
Fig. 3.

Nearest-neighbor interconnection with the von Neumann neighborhood.

Fig. 4.
Fig. 4.

Combination of microlenses and microprisms according to Fig. 1.

Fig. 5.
Fig. 5.

Microlens imaging system in the 2f configuration.

Fig. 6.
Fig. 6.

Comparison of the original array and the array imaged with the configuration in Fig. 5. Both images were recorded with an 8× microscope objective with N.A. 0.2. The pixel size is (30 μm)2. The imaged field has a size of 800 μm.

Fig. 7.
Fig. 7.

Microlens imaging system for generating a superposition of shifted copies.

Fig. 8.
Fig. 8.

Result of the superposition operation.

Fig. 9.
Fig. 9.

Dual-microlens imaging system.

Fig. 10.
Fig. 10.

Comparison of the original array and the array imaged with the configuration in Fig. 9. Both images were recorded with a 20× microscope objective with N.A. 0.5. The pixel size is (30 μm)2.

Fig. 11.
Fig. 11.

Optical setup for the cascading experiment. The relay optics was inserted so array-to-array transcription could be observed.

Fig. 12.
Fig. 12.

Result of array-to-array transcription. The source array was observed through a beam splitter with 1:10 splitting ratio and therefore appears darker.

Tables (1)

Tables Icon

Table 1 Relative Intensities of the Superposition

Metrics