Abstract

Flexible hollow glass waveguides with bore diameters as small as 250 μm have been developed for 3-μm laser delivery. All the guides exhibit straight losses between 0.10 and 1.73 dB/m, and the loss increases to between 2.4 and 5.1 dB/m upon bending 1 m of the guides into 15-cm-diameter coils. This behavior is shown to depend strongly on the launch conditions and mode quality of the input beam. The waveguides are capable of efficiently delivering up to 8 W of Er:YAG laser power with proper input coupling, and they are suitable for use in both medical and industrial applications.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. N. Merberg, “Current status of infrared fiber optics for medical laser power delivery,” Lasers Surg. Med. 13, 572–576 (1993).
  2. U. Kubo, Y. Hashishin, H. Tanaka, T. Mochizuki, “Development of optical fiber for medical Er:YAG laser,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1649, 34–40 (1992).
  3. G. Merberg, M. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for Er:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–233 (1990).
  4. A. R. Hilton, “Chalcogenide glass optical fibers,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 34–42 (1991).
  5. A. Katzir, R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47, 149–158 (1982).
  6. G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire fibers,” Appl. Opt. 32, 3201–3209 (1993).
  7. D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).
  8. J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D.M. Harris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2396, 4–14 (1995).
  9. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
  10. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–68471995).
  11. Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–22141990).
  12. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–66011993).
  13. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990).
  14. C. C. Gregory, J. A. Harrington, “Attenuation, modal, and polarization properties of n < 1, hollow dielectric waveguides,” Appl. Opt. 32, 5302–53091993).
  15. A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).
  16. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
  17. S. J. Saggese, J. A. Harrington, G. H. Sigel, “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16, 27–29 (1991).
  18. M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).

1995

1994

1993

1991

1990

1989

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).

1987

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).

1984

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).

1982

A. Katzir, R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47, 149–158 (1982).

Abel, T.

Arieli, R.

A. Katzir, R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47, 149–158 (1982).

Byer, R. L.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).

Croitoru, N.

Dror, J.

Fejer, M. M.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).

Gannot, I.

Gregory, C. C.

Harrington, J. A.

Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–68471995).

T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).

C. C. Gregory, J. A. Harrington, “Attenuation, modal, and polarization properties of n < 1, hollow dielectric waveguides,” Appl. Opt. 32, 5302–53091993).

G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire fibers,” Appl. Opt. 32, 3201–3209 (1993).

S. J. Saggese, J. A. Harrington, G. H. Sigel, “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16, 27–29 (1991).

G. Merberg, M. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for Er:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–233 (1990).

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D.M. Harris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2396, 4–14 (1995).

Hashishin, Y.

U. Kubo, Y. Hashishin, H. Tanaka, T. Mochizuki, “Development of optical fiber for medical Er:YAG laser,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1649, 34–40 (1992).

Hilton, A. R.

A. R. Hilton, “Chalcogenide glass optical fibers,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 34–42 (1991).

Hirsch, J.

Hongo, A.

Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–22141990).

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).

Jundt, D. H.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).

Karasawa, S.

M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).

Katzir, A.

A. Katzir, R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47, 149–158 (1982).

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).

Kubo, U.

U. Kubo, Y. Hashishin, H. Tanaka, T. Mochizuki, “Development of optical fiber for medical Er:YAG laser,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1649, 34–40 (1992).

Matsuura, Y.

Merberg, G.

G. Merberg, M. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for Er:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–233 (1990).

Merberg, G. N.

G. N. Merberg, “Current status of infrared fiber optics for medical laser power delivery,” Lasers Surg. Med. 13, 572–576 (1993).

G. N. Merberg, J. A. Harrington, “Optical and mechanical properties of single-crystal sapphire fibers,” Appl. Opt. 32, 3201–3209 (1993).

Miyagi, M.

Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–66011993).

Y. Matsuura, A. Hongo, M. Miyagi, “Dielectric-coated metallic hollow waveguide for 3-μm Er:YAG, 5-μm CO, and 10.6-μm CO2 laser light transmission,” Appl. Opt. 29, 2213–22141990).

M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990).

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).

Mochizuki, T.

U. Kubo, Y. Hashishin, H. Tanaka, T. Mochizuki, “Development of optical fiber for medical Er:YAG laser,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1649, 34–40 (1992).

Nishida, S.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).

Saggese, S. J.

Sakamoto, K.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).

Shahriari, M.

G. Merberg, M. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for Er:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–233 (1990).

Sigel, G. H.

S. J. Saggese, J. A. Harrington, G. H. Sigel, “Attenuation of incoherent infrared radiation in hollow sapphire and silica waveguides,” Opt. Lett. 16, 27–29 (1991).

G. Merberg, M. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for Er:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–233 (1990).

Tanaka, H.

U. Kubo, Y. Hashishin, H. Tanaka, T. Mochizuki, “Development of optical fiber for medical Er:YAG laser,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1649, 34–40 (1992).

Appl. Opt.

Appl. Phys. Lett.

D. H. Jundt, M. M. Fejer, R. L. Byer, “Characterization of single-crystal sapphire fibers for optical power delivery systems,” Appl. Phys. Lett. 55, 2170–2172 (1989).

J. Lightwave Technol.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).

J. Non-Cryst. Solids

A. Katzir, R. Arieli, “Long wavelength infrared optical fibers,” J. Non-Cryst. Solids 47, 149–158 (1982).

Lasers Surg. Med.

G. N. Merberg, “Current status of infrared fiber optics for medical laser power delivery,” Lasers Surg. Med. 13, 572–576 (1993).

Opt. Laser Technol.

A. Hongo, M. Miyagi, K. Sakamoto, S. Karasawa, S. Nishida, “Excitation dependent losses and temperature increase in various hollow waveguides at 10.6 μm,” Opt. Laser Technol. 19, 214–216 (1987).

Opt. Lett.

Other

J. A. Harrington, Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D.M. Harris, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2396, 4–14 (1995).

U. Kubo, Y. Hashishin, H. Tanaka, T. Mochizuki, “Development of optical fiber for medical Er:YAG laser,” in Optical Fibers in Medicine VII, A. Katzir, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1649, 34–40 (1992).

G. Merberg, M. Shahriari, J. A. Harrington, G. H. Sigel, “Evaluation of crystalline and chemically durable glass fibers for Er:YAG laser delivery systems,” in Infrared Fiber Optics II, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1228, 216–233 (1990).

A. R. Hilton, “Chalcogenide glass optical fibers,” in Infrared Fiber Optics III, J. A. Harrington, A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1591, 34–42 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectral loss of a typical hollow waveguide designed for use near 3 μm.

Fig. 2
Fig. 2

Beam profile of laser outputs: (a) Er:YAG, (b) Er:YSGG with 2-mm aperture, (c) Er:YSGG with 3.75-mm aperture.

Fig. 3
Fig. 3

Transmission loss of straight hollow waveguides as a function of bore diameter for laser inputs shown in Fig. 2. The theoretical loss assuming HE11 mode propagation of 2.94-μm light is included for comparison.

Fig. 4
Fig. 4

Bending loss of 530-μm-bore waveguide for Er:YSGG with 2-mm and with 3.75-mm apertures.

Fig. 5
Fig. 5

Measured bending loss of 250-, 320-, 530-, 700-, and 1000-μm-bore waveguides for Er:YSGG with 2-mm aperture.

Fig. 6
Fig. 6

Beam profiles of (a) 1000-μm and (b) 320-μm-bore straight waveguides for Er:YSGG with a 2-mm aperture.

Fig. 7
Fig. 7

Er:YAG laser power delivery for 1000-, 700-, and 530-μm-bore waveguides.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = ( U nm 2 π ) 2 λ 2 a 3 ( n n 2 + k 2 ) 1 2 [ 1 + n 1 2 ( n 1 2 1 ) 1 / 2 ] 2 .

Metrics