Abstract

A high-accuracy cryogenic radiometer has been developed at the National Institute of Standards and Technology to serve as a primary standard for optical power measurements. This instrument is an electrical-substitution radiometer that can be operated at cryogenic temperatures to achieve a relative standard uncertainty of 0.021% at an optical power level of 0.8 mW. The construction and operation of the high-accuracy cryogenic radiometer and the uncertainties in optical power measurements are detailed.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
  2. C. L. Cromer, “A new spectral response calibration method using a silicon photodiode trap detector,” presented at the 1991 Measurement Science Conference, Anaheim, Calif., 31 January–1 February 1991.
  3. C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, A. C. Parr, “National Institute of Standards and Technology detector-based photometric scale,”Appl. Opt. 32, 2936–2948 (1993).
  4. J. M. Houston, C. L. Cromer, J. E. Hardis, T. C. Larason, “Comparison of the NIST high accuracy cryogenic radiometer and the NIST scale of detector spectral response,” Metrologia 30, 285–290 (1993).
  5. T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the NIST high accuracy cryogenic radiometer,” submitted to Appl. Opt.
  6. F. Hengstberger, Absolute Radiometery (Academic, San Diego, Calif., 1989), Chap. 1, p. 30; Chap 6, p. 206.
  7. D. C. Ginnings, M. L. Reilly, “Calorimetric measurement of thermodynamic temperatures above 0 °C using total black-body radiation,” in Temperature: Its Measurement and Control in Science and Industry, H. H. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972), Vol. 4, Part I, pp. 339–348.
  8. C. R. Yokley, “Aradiometric calibration facility for low temperature blackbodies,” Earth Resources Aircraft Program Rep. (NASA, Washington D.C., 1976).
  9. C. R. Yokley, “Long wave infrared testing at NBS,” in Applications of Optical Metrology: Techniques and Measurements II, R. C. Harney, ed., Proc. Soc. Photo-Opt. Instrum. Eng.416, 2–8 (1983).
  10. T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant,” in Precision Measurement and Fundamental Constants II, Natl. Bur. Stand. (U.S.) Spec. Publ. 617, 291–297 (1984).
  11. T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between –40 °C and +100 °C,” Philos. Trans. R. Soc. London Ser. A 316, 85–189 (1985).
  12. J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
  13. J. E. Fu Lei, J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia30, 297–303 (1993).
  14. Certain trade names and company products are mentioned in the text or identified in an illustration in order to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.
  15. Model ITC-4, Oxford Instruments, Inc., 130A Baker Ave., Concord Mass. 01742.
  16. Chemglaze Z302, Lord Corporation, Industrial Coatings Division, 200 West Grandview Blvd., Erie, Pa. 16514-0038.
  17. 3M-Nextel, Minnesota Mining and Manufacturing, St. Paul, Minn. 55144-1000.
  18. R. U. Datla, K. Stock, A. C. Parr, C. C. Hoyt, P. J. Miller, P. V. Foukal, “Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements,”Appl. Opt. 31, 7219–7225 (1992).
  19. K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).
  20. M. Woolfrey, Oxford Instruments, Old Station Way, Eynsham, Witney, Oxon, U.K. (personal communication), 1995.
  21. Model LS-100, Cambridge Research and Instrumentation, Inc., 21 Erie St., Cambridge, Mass. 02139.
  22. G. K. White, Experimental Techniques in Low Temperature Physics (Oxford Univ., New York, 1987), p. 111.
  23. B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297, 2nd ed. (National Institute of Standards and Technology, Gaithersburg, Md., 1994).
  24. T. R. Gentile, C. L. Cromer, “Mode-locked lasers for high accuracy cryogenic radiometry,” Metrologia (to be published).

1993 (3)

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, A. C. Parr, “National Institute of Standards and Technology detector-based photometric scale,”Appl. Opt. 32, 2936–2948 (1993).

J. M. Houston, C. L. Cromer, J. E. Hardis, T. C. Larason, “Comparison of the NIST high accuracy cryogenic radiometer and the NIST scale of detector spectral response,” Metrologia 30, 285–290 (1993).

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).

1992 (1)

1985 (2)

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between –40 °C and +100 °C,” Philos. Trans. R. Soc. London Ser. A 316, 85–189 (1985).

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).

1984 (1)

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant,” in Precision Measurement and Fundamental Constants II, Natl. Bur. Stand. (U.S.) Spec. Publ. 617, 291–297 (1984).

1983 (1)

Cromer, C. L.

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, A. C. Parr, “National Institute of Standards and Technology detector-based photometric scale,”Appl. Opt. 32, 2936–2948 (1993).

J. M. Houston, C. L. Cromer, J. E. Hardis, T. C. Larason, “Comparison of the NIST high accuracy cryogenic radiometer and the NIST scale of detector spectral response,” Metrologia 30, 285–290 (1993).

C. L. Cromer, “A new spectral response calibration method using a silicon photodiode trap detector,” presented at the 1991 Measurement Science Conference, Anaheim, Calif., 31 January–1 February 1991.

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the NIST high accuracy cryogenic radiometer,” submitted to Appl. Opt.

T. R. Gentile, C. L. Cromer, “Mode-locked lasers for high accuracy cryogenic radiometry,” Metrologia (to be published).

Datla, R. U.

Duda, C. R.

Eppeldauer, G.

Fischer, J.

J. E. Fu Lei, J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia30, 297–303 (1993).

Foukal, P. V.

Fox, N. P.

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).

Fu Lei, J. E.

J. E. Fu Lei, J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia30, 297–303 (1993).

Gentile, T. R.

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the NIST high accuracy cryogenic radiometer,” submitted to Appl. Opt.

T. R. Gentile, C. L. Cromer, “Mode-locked lasers for high accuracy cryogenic radiometry,” Metrologia (to be published).

Ginnings, D. C.

D. C. Ginnings, M. L. Reilly, “Calorimetric measurement of thermodynamic temperatures above 0 °C using total black-body radiation,” in Temperature: Its Measurement and Control in Science and Industry, H. H. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972), Vol. 4, Part I, pp. 339–348.

Hardis, J. E.

J. M. Houston, C. L. Cromer, J. E. Hardis, T. C. Larason, “Comparison of the NIST high accuracy cryogenic radiometer and the NIST scale of detector spectral response,” Metrologia 30, 285–290 (1993).

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, A. C. Parr, “National Institute of Standards and Technology detector-based photometric scale,”Appl. Opt. 32, 2936–2948 (1993).

Hengstberger, F.

F. Hengstberger, Absolute Radiometery (Academic, San Diego, Calif., 1989), Chap. 1, p. 30; Chap 6, p. 206.

Hofer, H.

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).

Houston, J. M.

J. M. Houston, C. L. Cromer, J. E. Hardis, T. C. Larason, “Comparison of the NIST high accuracy cryogenic radiometer and the NIST scale of detector spectral response,” Metrologia 30, 285–290 (1993).

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the NIST high accuracy cryogenic radiometer,” submitted to Appl. Opt.

Hoyt, C. C.

Key, P. J.

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).

Kuyatt, C. E.

B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297, 2nd ed. (National Institute of Standards and Technology, Gaithersburg, Md., 1994).

Larason, T. C.

J. M. Houston, C. L. Cromer, J. E. Hardis, T. C. Larason, “Comparison of the NIST high accuracy cryogenic radiometer and the NIST scale of detector spectral response,” Metrologia 30, 285–290 (1993).

C. L. Cromer, G. Eppeldauer, J. E. Hardis, T. C. Larason, A. C. Parr, “National Institute of Standards and Technology detector-based photometric scale,”Appl. Opt. 32, 2936–2948 (1993).

Martin, J. E.

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between –40 °C and +100 °C,” Philos. Trans. R. Soc. London Ser. A 316, 85–189 (1985).

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant,” in Precision Measurement and Fundamental Constants II, Natl. Bur. Stand. (U.S.) Spec. Publ. 617, 291–297 (1984).

Miller, P. J.

Parr, A. C.

Quinn, T. J.

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between –40 °C and +100 °C,” Philos. Trans. R. Soc. London Ser. A 316, 85–189 (1985).

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant,” in Precision Measurement and Fundamental Constants II, Natl. Bur. Stand. (U.S.) Spec. Publ. 617, 291–297 (1984).

Reilly, M. L.

D. C. Ginnings, M. L. Reilly, “Calorimetric measurement of thermodynamic temperatures above 0 °C using total black-body radiation,” in Temperature: Its Measurement and Control in Science and Industry, H. H. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972), Vol. 4, Part I, pp. 339–348.

Stock, K.

Stock, K. D.

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).

Taylor, B. N.

B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297, 2nd ed. (National Institute of Standards and Technology, Gaithersburg, Md., 1994).

White, G. K.

G. K. White, Experimental Techniques in Low Temperature Physics (Oxford Univ., New York, 1987), p. 111.

Woolfrey, M.

M. Woolfrey, Oxford Instruments, Old Station Way, Eynsham, Witney, Oxon, U.K. (personal communication), 1995.

Yokley, C. R.

C. R. Yokley, “Aradiometric calibration facility for low temperature blackbodies,” Earth Resources Aircraft Program Rep. (NASA, Washington D.C., 1976).

C. R. Yokley, “Long wave infrared testing at NBS,” in Applications of Optical Metrology: Techniques and Measurements II, R. C. Harney, ed., Proc. Soc. Photo-Opt. Instrum. Eng.416, 2–8 (1983).

Zalewski, E. F.

Appl. Opt. (3)

Metrologia (3)

K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993).

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).

J. M. Houston, C. L. Cromer, J. E. Hardis, T. C. Larason, “Comparison of the NIST high accuracy cryogenic radiometer and the NIST scale of detector spectral response,” Metrologia 30, 285–290 (1993).

Natl. Bur. Stand. (U.S.) Spec. Publ (1)

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant,” in Precision Measurement and Fundamental Constants II, Natl. Bur. Stand. (U.S.) Spec. Publ. 617, 291–297 (1984).

Philos. Trans. R. Soc. London Ser. A (1)

T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between –40 °C and +100 °C,” Philos. Trans. R. Soc. London Ser. A 316, 85–189 (1985).

Other (16)

C. L. Cromer, “A new spectral response calibration method using a silicon photodiode trap detector,” presented at the 1991 Measurement Science Conference, Anaheim, Calif., 31 January–1 February 1991.

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the NIST high accuracy cryogenic radiometer,” submitted to Appl. Opt.

F. Hengstberger, Absolute Radiometery (Academic, San Diego, Calif., 1989), Chap. 1, p. 30; Chap 6, p. 206.

D. C. Ginnings, M. L. Reilly, “Calorimetric measurement of thermodynamic temperatures above 0 °C using total black-body radiation,” in Temperature: Its Measurement and Control in Science and Industry, H. H. Plumb, ed. (Instrument Society of America, Pittsburgh, Pa., 1972), Vol. 4, Part I, pp. 339–348.

C. R. Yokley, “Aradiometric calibration facility for low temperature blackbodies,” Earth Resources Aircraft Program Rep. (NASA, Washington D.C., 1976).

C. R. Yokley, “Long wave infrared testing at NBS,” in Applications of Optical Metrology: Techniques and Measurements II, R. C. Harney, ed., Proc. Soc. Photo-Opt. Instrum. Eng.416, 2–8 (1983).

J. E. Fu Lei, J. Fischer, “Characterization of photodiodes in the UV and visible spectral region based on cryogenic radiometry,” Metrologia30, 297–303 (1993).

Certain trade names and company products are mentioned in the text or identified in an illustration in order to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are necessarily the best available for the purpose.

Model ITC-4, Oxford Instruments, Inc., 130A Baker Ave., Concord Mass. 01742.

Chemglaze Z302, Lord Corporation, Industrial Coatings Division, 200 West Grandview Blvd., Erie, Pa. 16514-0038.

3M-Nextel, Minnesota Mining and Manufacturing, St. Paul, Minn. 55144-1000.

M. Woolfrey, Oxford Instruments, Old Station Way, Eynsham, Witney, Oxon, U.K. (personal communication), 1995.

Model LS-100, Cambridge Research and Instrumentation, Inc., 21 Erie St., Cambridge, Mass. 02139.

G. K. White, Experimental Techniques in Low Temperature Physics (Oxford Univ., New York, 1987), p. 111.

B. N. Taylor, C. E. Kuyatt, “Guidelines for evaluating and expressing the uncertainty of NIST measurement results,” NIST Tech. Note 1297, 2nd ed. (National Institute of Standards and Technology, Gaithersburg, Md., 1994).

T. R. Gentile, C. L. Cromer, “Mode-locked lasers for high accuracy cryogenic radiometry,” Metrologia (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

NIST high-accuracy cryogenic radiometer.

Fig. 2
Fig. 2

Detailed view of the critical elements of the HACR: a, liquid-helium reservoir; b, thermal link between liquid-helium reservoir and the reference block; c, reference block (5 K);d, reference-block GRT's; e, thermal anchoring of GRT leads; f, thermal link between the reference block and the cavity; g, top end cap of cavity; h, slanted piece within cavity; i, cavity cylinder; j, bottom end cap of cavity; k, cavity GRT's; l, wire-wound heater; m, thin-film heater; n, laser beam.

Fig. 3
Fig. 3

Laser system for optical power measurements with the HACR.

Fig. 4
Fig. 4

Schematic diagram of the HACR measurement instrumentation. The elements shown within the box are inside the HACR Dewar.

Fig. 5
Fig. 5

Plot illustrating the time dependence of cavity GRT voltage V GRT for heat input. The data shown by filled circles were fit to a double exponential form (shown by the solid curve) as described in the text. The open circles show the percentage deviation of the data from the fit. The scale for the data is on the left-hand y axis, and the scale for the percent residuals is on the right-hand y axis.

Fig. 6
Fig. 6

Function G(V E ) that is used to predict heater current I H needed to produce a given equilibrium GRT voltage. The solid curve shows G(V E ), and the dotted curve (with filled circles) shows a calculation of the expected shape of G(V E ) as described in the text.

Fig. 7
Fig. 7

Plot illustrating how a nonequivalence in background heat can lead to a dependence of the measured quantum efficiency of a trap detector η m on the measured optical power P m . The open circles (filled squares) show data taken before (after) a nonequivalence in background heating was eliminated. The solid curve shows the result of fitting the data shown by open circles to Eq. (6). At low values of P m , where the type A uncertainty dominates, the error bars represent the standard deviation of the mean.

Fig. 8
Fig. 8

Plot illustrating the variations in repeated measurements of three quantities: the optical power of an intensity-stabilized He–Ne laser as determined by the HACR (solid curve), the signal from a trap detector illuminated by this laser (dashed curve), and the quantum efficiency of the trap detector as determined from the first two quantities (dotted curve). We can see that the dominant source of random variation in the measurement of quantum efficiency is in the optical power measurement by the HACR.

Fig. 9
Fig. 9

Type A uncertainty of the HACR versus optical power, as measured by the relative standard deviation in measurements of the quantum efficiency of a trap detector. The solid curve shows a fit of the data to a form that varies inversely with optical power.

Tables (1)

Tables Icon

Table 1 Components of the Combined Relative Standard Uncertainty of 0.021% in the Measurement of Optical Power by the HACR a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P H = V H V R R ,
V GRT = C 0 + C 1 exp ( t / τ 1 ) + C 2 exp ( t / τ 2 ) ,
Δ I H = ( V L V 1 ) d I H d V E ,
P H = P 1 ( V 2 V L ) + P 2 ( V L V 1 ) V 2 V 1 .
P L = 1 T ( N P H A + P S ) ,
η m = η P m C P m ,

Metrics