Abstract

Calculations are presented for a set of aberration-corrected holographic concave gratings for possible use in space mission instruments. It is concluded that, for the visible range 0.26−1.02 μm when detectors with a 15-μm pixel size are used, a total field of view of ∼1° is possible at an aperture of f/7.0. For the infrared regions 0.9−2.5 μm and 2.4−4.2 μm, in which detector arrays have larger pixel sizes of 30−40 μm, a spatial field of view of ∼2° at f/7.0 and ∼1.0° at f/3.5 can be achieved. An exploration of spectrum lengths showed that performance starts to fall off sharply for lengths over 15 mm at a focal length of 150 mm (i.e., a spectral angular extent of ∼6°).

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Hutley, Diffraction Gratings (Academic, London, 1982).
  2. M. P. Chrisp, “Aberration-corrected holographic gratings and their mountings,” in Applied Optics and Optical Engineering, J. C. Wyant, eds. (Academic, New York, 1987), Vol. X, Chap. XX, pp. 391–454.
  3. J. M. Lerner, J. Flamand, A. Thevenon, “Ion-etching as a means of blazing and optimizing holographic diffraction gratings,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.353, 68–71 (1983).
  4. K. F. Heidemann, R. F. Bittner, “Design and holographic production of aberration-corrected synchrotron diffraction gratings,” presented at the International Congress on Optical Science and Engineering (ECO2), Paris, 1989.
  5. J. Flamand, F. Bonnemason, A. Thevenon, J. M. Lerner, “The blazing of holographic gratings using ion-etching,” in Raman Scattering, Luminescence and Spectroscopic Instrumentation in Technology, F. Adar, J. E. Griffiths, J. M. Lerner, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1055, 288–294 (1989).
  6. M. Koike, Y. Harada, H. Noda, “New blazed holographic grating fabricated by using an aspherical recording with an ion-etching method,” in Application and Theory of Periodic Structures, Diffraction Gratings, and Moire Phenomena III, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.815, 96–101 (1987).
  7. J. M. Lerner, J. Flamand, J. P. Laude, G. Passereau, A. Thevenon, “Aberration corrected holographically recorded diffraction gratings,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.240, 72–81 (1981).
  8. J. M. Lerner, R. J. Chambers, G. Passereau, “Flat field imaging spectroscopy using aberration corrected holographic gratings,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.268, 122–128 (1981).
  9. R. D. Jalkian, R. S. Pomeroy, J. D. Kolczynski, M. Bonner Denton, J. M. Lerner, R. Grayzel, “Evaluation and application of a holographic aberration corrected imaging spectrograph,” Am. Lab. 21, 80–88 (1989).
  10. M. Pouey, “Anastigmat flat field ploychromators,” Phys. Scr. 41, 761–764 (1990).
  11. Thomas Mikes, American Holographics, 601 River Street, Fitchburgh, Mass. 01420 (personal communication, 1995).
  12. Carl Zeiss-Oberkochen, Postfach 1380, D-73446, Oberkochen, Germany.
  13. Jobin-Yvon Instruments S.A., Inc., 6 Olsen Ave., Edison, New Jersey 08820-2419.
  14. Milton Roy, 820 Linden Ave., Rochester, New York 14625.
  15. Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyoku, Kyoto 604, Japan.
  16. H. Noda, T. Namioka, M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974).
  17. Diffraction Gratings, Ruled and Holographic (Jobin-Yvon, Long Jumeau, France, 1973).
  18. B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount I,” Opt. Acta 28, 1587–1599 (1981).
  19. B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount II,” Opt. Acta 28, 1601–1610 (1981).
  20. C. Palmer, “Deviation of second-order focal curves in common plane-symmetric spectrometer mounts,” J. Opt. Soc. Am. A 7, 1770–1778 (1990).

1990 (2)

1989 (1)

R. D. Jalkian, R. S. Pomeroy, J. D. Kolczynski, M. Bonner Denton, J. M. Lerner, R. Grayzel, “Evaluation and application of a holographic aberration corrected imaging spectrograph,” Am. Lab. 21, 80–88 (1989).

1981 (2)

B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount I,” Opt. Acta 28, 1587–1599 (1981).

B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount II,” Opt. Acta 28, 1601–1610 (1981).

1974 (1)

Bittner, R. F.

K. F. Heidemann, R. F. Bittner, “Design and holographic production of aberration-corrected synchrotron diffraction gratings,” presented at the International Congress on Optical Science and Engineering (ECO2), Paris, 1989.

Bonnemason, F.

J. Flamand, F. Bonnemason, A. Thevenon, J. M. Lerner, “The blazing of holographic gratings using ion-etching,” in Raman Scattering, Luminescence and Spectroscopic Instrumentation in Technology, F. Adar, J. E. Griffiths, J. M. Lerner, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1055, 288–294 (1989).

Bonner Denton, M.

R. D. Jalkian, R. S. Pomeroy, J. D. Kolczynski, M. Bonner Denton, J. M. Lerner, R. Grayzel, “Evaluation and application of a holographic aberration corrected imaging spectrograph,” Am. Lab. 21, 80–88 (1989).

Brown, B.

B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount I,” Opt. Acta 28, 1587–1599 (1981).

B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount II,” Opt. Acta 28, 1601–1610 (1981).

Chambers, R. J.

J. M. Lerner, R. J. Chambers, G. Passereau, “Flat field imaging spectroscopy using aberration corrected holographic gratings,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.268, 122–128 (1981).

Chrisp, M. P.

M. P. Chrisp, “Aberration-corrected holographic gratings and their mountings,” in Applied Optics and Optical Engineering, J. C. Wyant, eds. (Academic, New York, 1987), Vol. X, Chap. XX, pp. 391–454.

Flamand, J.

J. M. Lerner, J. Flamand, A. Thevenon, “Ion-etching as a means of blazing and optimizing holographic diffraction gratings,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.353, 68–71 (1983).

J. M. Lerner, J. Flamand, J. P. Laude, G. Passereau, A. Thevenon, “Aberration corrected holographically recorded diffraction gratings,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.240, 72–81 (1981).

J. Flamand, F. Bonnemason, A. Thevenon, J. M. Lerner, “The blazing of holographic gratings using ion-etching,” in Raman Scattering, Luminescence and Spectroscopic Instrumentation in Technology, F. Adar, J. E. Griffiths, J. M. Lerner, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1055, 288–294 (1989).

Grayzel, R.

R. D. Jalkian, R. S. Pomeroy, J. D. Kolczynski, M. Bonner Denton, J. M. Lerner, R. Grayzel, “Evaluation and application of a holographic aberration corrected imaging spectrograph,” Am. Lab. 21, 80–88 (1989).

Harada, Y.

M. Koike, Y. Harada, H. Noda, “New blazed holographic grating fabricated by using an aspherical recording with an ion-etching method,” in Application and Theory of Periodic Structures, Diffraction Gratings, and Moire Phenomena III, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.815, 96–101 (1987).

Heidemann, K. F.

K. F. Heidemann, R. F. Bittner, “Design and holographic production of aberration-corrected synchrotron diffraction gratings,” presented at the International Congress on Optical Science and Engineering (ECO2), Paris, 1989.

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Academic, London, 1982).

Jalkian, R. D.

R. D. Jalkian, R. S. Pomeroy, J. D. Kolczynski, M. Bonner Denton, J. M. Lerner, R. Grayzel, “Evaluation and application of a holographic aberration corrected imaging spectrograph,” Am. Lab. 21, 80–88 (1989).

Koike, M.

M. Koike, Y. Harada, H. Noda, “New blazed holographic grating fabricated by using an aspherical recording with an ion-etching method,” in Application and Theory of Periodic Structures, Diffraction Gratings, and Moire Phenomena III, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.815, 96–101 (1987).

Kolczynski, J. D.

R. D. Jalkian, R. S. Pomeroy, J. D. Kolczynski, M. Bonner Denton, J. M. Lerner, R. Grayzel, “Evaluation and application of a holographic aberration corrected imaging spectrograph,” Am. Lab. 21, 80–88 (1989).

Laude, J. P.

J. M. Lerner, J. Flamand, J. P. Laude, G. Passereau, A. Thevenon, “Aberration corrected holographically recorded diffraction gratings,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.240, 72–81 (1981).

Lerner, J. M.

R. D. Jalkian, R. S. Pomeroy, J. D. Kolczynski, M. Bonner Denton, J. M. Lerner, R. Grayzel, “Evaluation and application of a holographic aberration corrected imaging spectrograph,” Am. Lab. 21, 80–88 (1989).

J. Flamand, F. Bonnemason, A. Thevenon, J. M. Lerner, “The blazing of holographic gratings using ion-etching,” in Raman Scattering, Luminescence and Spectroscopic Instrumentation in Technology, F. Adar, J. E. Griffiths, J. M. Lerner, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1055, 288–294 (1989).

J. M. Lerner, J. Flamand, J. P. Laude, G. Passereau, A. Thevenon, “Aberration corrected holographically recorded diffraction gratings,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.240, 72–81 (1981).

J. M. Lerner, J. Flamand, A. Thevenon, “Ion-etching as a means of blazing and optimizing holographic diffraction gratings,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.353, 68–71 (1983).

J. M. Lerner, R. J. Chambers, G. Passereau, “Flat field imaging spectroscopy using aberration corrected holographic gratings,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.268, 122–128 (1981).

Mikes, Thomas

Thomas Mikes, American Holographics, 601 River Street, Fitchburgh, Mass. 01420 (personal communication, 1995).

Namioka, T.

Noda, H.

H. Noda, T. Namioka, M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031–1036 (1974).

M. Koike, Y. Harada, H. Noda, “New blazed holographic grating fabricated by using an aspherical recording with an ion-etching method,” in Application and Theory of Periodic Structures, Diffraction Gratings, and Moire Phenomena III, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.815, 96–101 (1987).

Palmer, C.

Passereau, G.

J. M. Lerner, J. Flamand, J. P. Laude, G. Passereau, A. Thevenon, “Aberration corrected holographically recorded diffraction gratings,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.240, 72–81 (1981).

J. M. Lerner, R. J. Chambers, G. Passereau, “Flat field imaging spectroscopy using aberration corrected holographic gratings,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.268, 122–128 (1981).

Pomeroy, R. S.

R. D. Jalkian, R. S. Pomeroy, J. D. Kolczynski, M. Bonner Denton, J. M. Lerner, R. Grayzel, “Evaluation and application of a holographic aberration corrected imaging spectrograph,” Am. Lab. 21, 80–88 (1989).

Pouey, M.

M. Pouey, “Anastigmat flat field ploychromators,” Phys. Scr. 41, 761–764 (1990).

Seya, M.

Thevenon, A.

J. M. Lerner, J. Flamand, J. P. Laude, G. Passereau, A. Thevenon, “Aberration corrected holographically recorded diffraction gratings,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.240, 72–81 (1981).

J. Flamand, F. Bonnemason, A. Thevenon, J. M. Lerner, “The blazing of holographic gratings using ion-etching,” in Raman Scattering, Luminescence and Spectroscopic Instrumentation in Technology, F. Adar, J. E. Griffiths, J. M. Lerner, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1055, 288–294 (1989).

J. M. Lerner, J. Flamand, A. Thevenon, “Ion-etching as a means of blazing and optimizing holographic diffraction gratings,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.353, 68–71 (1983).

Wilson, I. J.

B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount II,” Opt. Acta 28, 1601–1610 (1981).

B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount I,” Opt. Acta 28, 1587–1599 (1981).

Zeiss-Oberkochen, Carl

Carl Zeiss-Oberkochen, Postfach 1380, D-73446, Oberkochen, Germany.

Am. Lab. (1)

R. D. Jalkian, R. S. Pomeroy, J. D. Kolczynski, M. Bonner Denton, J. M. Lerner, R. Grayzel, “Evaluation and application of a holographic aberration corrected imaging spectrograph,” Am. Lab. 21, 80–88 (1989).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Acta (2)

B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount I,” Opt. Acta 28, 1587–1599 (1981).

B. Brown, I. J. Wilson, “Holographic grating aberration correction for a Rowland circle mount II,” Opt. Acta 28, 1601–1610 (1981).

Phys. Scr. (1)

M. Pouey, “Anastigmat flat field ploychromators,” Phys. Scr. 41, 761–764 (1990).

Other (14)

Thomas Mikes, American Holographics, 601 River Street, Fitchburgh, Mass. 01420 (personal communication, 1995).

Carl Zeiss-Oberkochen, Postfach 1380, D-73446, Oberkochen, Germany.

Jobin-Yvon Instruments S.A., Inc., 6 Olsen Ave., Edison, New Jersey 08820-2419.

Milton Roy, 820 Linden Ave., Rochester, New York 14625.

Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyoku, Kyoto 604, Japan.

Diffraction Gratings, Ruled and Holographic (Jobin-Yvon, Long Jumeau, France, 1973).

M. C. Hutley, Diffraction Gratings (Academic, London, 1982).

M. P. Chrisp, “Aberration-corrected holographic gratings and their mountings,” in Applied Optics and Optical Engineering, J. C. Wyant, eds. (Academic, New York, 1987), Vol. X, Chap. XX, pp. 391–454.

J. M. Lerner, J. Flamand, A. Thevenon, “Ion-etching as a means of blazing and optimizing holographic diffraction gratings,” in Industrial and Commercial Applications of Holography, M. Chang, ed., Proc. Soc. Photo-Opt. Instrum. Eng.353, 68–71 (1983).

K. F. Heidemann, R. F. Bittner, “Design and holographic production of aberration-corrected synchrotron diffraction gratings,” presented at the International Congress on Optical Science and Engineering (ECO2), Paris, 1989.

J. Flamand, F. Bonnemason, A. Thevenon, J. M. Lerner, “The blazing of holographic gratings using ion-etching,” in Raman Scattering, Luminescence and Spectroscopic Instrumentation in Technology, F. Adar, J. E. Griffiths, J. M. Lerner, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1055, 288–294 (1989).

M. Koike, Y. Harada, H. Noda, “New blazed holographic grating fabricated by using an aspherical recording with an ion-etching method,” in Application and Theory of Periodic Structures, Diffraction Gratings, and Moire Phenomena III, J. M. Lerner, ed., Proc. Soc. Photo-Opt. Instrum. Eng.815, 96–101 (1987).

J. M. Lerner, J. Flamand, J. P. Laude, G. Passereau, A. Thevenon, “Aberration corrected holographically recorded diffraction gratings,” in Periodic Structures, Gratings, Moire Patterns, and Diffraction Phenomena I, C. H. Chi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.240, 72–81 (1981).

J. M. Lerner, R. J. Chambers, G. Passereau, “Flat field imaging spectroscopy using aberration corrected holographic gratings,” in Imaging Spectroscopy I, D. D. Norris, ed., Proc. Soc. Photo-Opt. Instrum. Eng.268, 122–128 (1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of holographic grating operation, definition of parameters, and sign convention used. Counterclockwise angles from grating normal are positive.

Fig. 2
Fig. 2

Diagram that shows construction set up and definition of construction parameters. Counterclockwise angles from grating normal in the xy plane are positive.

Fig. 3
Fig. 3

Examples of spot diagrams at different focus settings for case 4b at 500 nm (Table 1), a 25-mm-long, spectrum and an f/7.0 aperture. Although the spectral and the spatial widths are roughly equal for most field angles, near the spectral axis an appropriate focus shift can optimize either of the two, depending on the desired application. The scale of 0.50 mm given in the figure is the same for the spatial and the spectral axes.

Fig. 4
Fig. 4

Performance of visible range grating, case 1 of Table 1. rms diameters of the PSF are plotted against the field angle. The instrument TFOV is twice the field angle. Horizontal dashed lines represent a guide to the field angles that yield acceptable performance for desired spot diameters of 30, 60, and 90 μm, as discussed in the text.

Fig. 5
Fig. 5

Similar to Fig. 4 but for the IR region 0.9−2.5 μm, case 2 of Table 1.

Fig. 6
Fig. 6

Performance of the IR grating 2.4−4.2 μm, case 3 of Table 1. In this figure the FWHM of the PSF’s rather than the rms diameters are plotted. Squares represent the spatial width, and crosses are for the spectral direction. At reasonable field angles the spatial and the spectral widths are essentially equal and very close to the rms diameters. Near the spectral axis, the two values diverge considerably, depending on the particular focus position chosen, as illustrated in Fig. 3.

Fig. 7
Fig. 7

Comparison between the performance of 25-mm-long and 15.4-mm-long detectors for wavelengths at the two end points and in the middle of the spectral range. All calculations are for an aperture of f/3.5. Because the dispersion is kept constant, the longer detector has a greater wavelength coverage but considerably poorer performance.

Fig. 8
Fig. 8

Examples of performance for detector lengths of 40, 25, and 15.4 mm all at a wavelength of 520 nm. The performance deteriorates rather sharply for the longer detectors.

Tables (3)

Tables Icon

Table 1 Specifications for Holographic-Grating Designs to be Studied

Tables Icon

Table 2 Grating Parameters for the Cases Calculated

Tables Icon

Table 3 Construction Parameters for the Cases Studied

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k λ n = sin α+sin β.
k n Δ λ  =  ( cos β ) Δ β,
k n l β s = cos β  or  k n l β s 1 ,
k n r s = 1.
( k λ n ) / 2 = [ sin ( α + Δ 2 ) ] cos  Δ 2 .
λ 0 ( sin α+sin β ) = k λ ( sin δ sin γ ) ,
n λ 0 = ( sin δ sin γ ) .

Metrics