Abstract

A new readout structure is investigated for signal-processing-in-the-element detectors that yields a modulation transfer function that is 3.5 dB better than those currently used. Experimental verification is performed in Si rather than HgCdTe, with similarity relations derived for the two semiconductors.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Elliott, “New detector for thermal imaging systems,” Electron. Lett. 17, 312–313 (1981).
  2. T. Ashley, C. T. Elliott, A. M. White, J. T. M. Wotherspoon, M. D. Johns, “Optimization of spatial resolution in SPRITE detectors,” Infrared Phys. 24, 25–33 (1984).
  3. G. D. Boreman, A. E. Plogstedt, “Spatial filtering by a line scanned nonrectangular detector: application to SPRITE readout MTF,” Appl. Opt. 28, 1165–1168 (1989).
  4. E. Buckingham, “On physically similar systems; illustrations of the use of dimensional analysis,” Phys. Rev. 4, 345–376 (1914).
  5. F. J. Effenberger, G. D. Boreman, “Modal analysis of transport processes in SPRITE detectors,” Appl. Opt. 34, 4651–4661 (1995).
  6. S. M. Sze, Physics of Semiconductor Devices (Wiley Interscience, New York, 1969), p. 58.
  7. A. Campbell, C. T. Elliott, A. M. White, “Optimization of SPRITE detectors in anamorphic imaging systems,” IEE Conf. Publ. London 263, 18–823 (1986).

1995 (1)

1989 (1)

1986 (1)

A. Campbell, C. T. Elliott, A. M. White, “Optimization of SPRITE detectors in anamorphic imaging systems,” IEE Conf. Publ. London 263, 18–823 (1986).

1984 (1)

T. Ashley, C. T. Elliott, A. M. White, J. T. M. Wotherspoon, M. D. Johns, “Optimization of spatial resolution in SPRITE detectors,” Infrared Phys. 24, 25–33 (1984).

1981 (1)

C. T. Elliott, “New detector for thermal imaging systems,” Electron. Lett. 17, 312–313 (1981).

1914 (1)

E. Buckingham, “On physically similar systems; illustrations of the use of dimensional analysis,” Phys. Rev. 4, 345–376 (1914).

Ashley, T.

T. Ashley, C. T. Elliott, A. M. White, J. T. M. Wotherspoon, M. D. Johns, “Optimization of spatial resolution in SPRITE detectors,” Infrared Phys. 24, 25–33 (1984).

Boreman, G. D.

Buckingham, E.

E. Buckingham, “On physically similar systems; illustrations of the use of dimensional analysis,” Phys. Rev. 4, 345–376 (1914).

Campbell, A.

A. Campbell, C. T. Elliott, A. M. White, “Optimization of SPRITE detectors in anamorphic imaging systems,” IEE Conf. Publ. London 263, 18–823 (1986).

Effenberger, F. J.

Elliott, C. T.

A. Campbell, C. T. Elliott, A. M. White, “Optimization of SPRITE detectors in anamorphic imaging systems,” IEE Conf. Publ. London 263, 18–823 (1986).

T. Ashley, C. T. Elliott, A. M. White, J. T. M. Wotherspoon, M. D. Johns, “Optimization of spatial resolution in SPRITE detectors,” Infrared Phys. 24, 25–33 (1984).

C. T. Elliott, “New detector for thermal imaging systems,” Electron. Lett. 17, 312–313 (1981).

Johns, M. D.

T. Ashley, C. T. Elliott, A. M. White, J. T. M. Wotherspoon, M. D. Johns, “Optimization of spatial resolution in SPRITE detectors,” Infrared Phys. 24, 25–33 (1984).

Plogstedt, A. E.

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices (Wiley Interscience, New York, 1969), p. 58.

White, A. M.

A. Campbell, C. T. Elliott, A. M. White, “Optimization of SPRITE detectors in anamorphic imaging systems,” IEE Conf. Publ. London 263, 18–823 (1986).

T. Ashley, C. T. Elliott, A. M. White, J. T. M. Wotherspoon, M. D. Johns, “Optimization of spatial resolution in SPRITE detectors,” Infrared Phys. 24, 25–33 (1984).

Wotherspoon, J. T. M.

T. Ashley, C. T. Elliott, A. M. White, J. T. M. Wotherspoon, M. D. Johns, “Optimization of spatial resolution in SPRITE detectors,” Infrared Phys. 24, 25–33 (1984).

Appl. Opt. (2)

Electron. Lett. (1)

C. T. Elliott, “New detector for thermal imaging systems,” Electron. Lett. 17, 312–313 (1981).

IEE Conf. Publ. London (1)

A. Campbell, C. T. Elliott, A. M. White, “Optimization of SPRITE detectors in anamorphic imaging systems,” IEE Conf. Publ. London 263, 18–823 (1986).

Infrared Phys. (1)

T. Ashley, C. T. Elliott, A. M. White, J. T. M. Wotherspoon, M. D. Johns, “Optimization of spatial resolution in SPRITE detectors,” Infrared Phys. 24, 25–33 (1984).

Phys. Rev. (1)

E. Buckingham, “On physically similar systems; illustrations of the use of dimensional analysis,” Phys. Rev. 4, 345–376 (1914).

Other (1)

S. M. Sze, Physics of Semiconductor Devices (Wiley Interscience, New York, 1969), p. 58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two common SPRITE readout structures. A direct current is applied to the bias contact, and the readout voltage is measured from the ground to the readout contacts. The along-scan length of the readout is usually set equal to the cross-scan width of the SPRITE. A typical width in HgCdTe is 63 μm. i, bias current; V, measured voltage.

Fig. 2
Fig. 2

Readout structures implemented in Si. A direct bias current is applied, and voltage or resistance is measured across the terminals as indicated. In each case the along-scan length of the readout and the cross-scan width of the SPRITE are both 4 mm. R, measured resistance.

Fig. 3
Fig. 3

Impulse responses of the four Si readouts tested.

Fig. 4
Fig. 4

MTF's of the four Si readouts tested.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U A U B = μ B D A μ A D B
l A l B = w A w B = d A d B .
l A l B = ( D A τ A ) 1 / 2 ( D B τ B ) 1 / 2 .
V S A V S B = ( D A τ B ) 1 / 2 ( D B τ A ) 1 / 2 .

Metrics