Abstract

Mid-infrared magnetic rotation spectroscopy (MRS) experiments on nitric oxide (NO) are quantitatively modeled by theoretical calculations. The verified theory is used to specify an instrument that can make in situ measurements on NO and NO2 in the Earth’s atmosphere at a sensitivity level of a few parts in 1012 by volume per second. The prototype instrument used in the experiments has an extrapolated detection limit for NO of 30 parts in 109 for a 1-s integration time over a 12-cm path length. The detection limit is an extrapolation of experimental results to a signal-to-noise ratio of one, where the noise is considered to be one-half the peak-to-peak baseline noise. Also discussed are the various factors that can limit the sensitivity of a MRS spectrometer that uses liquid-nitrogen-cooled lead-salt diode lasers and photovoltaic detectors.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Kurylo, J. A. Kaye, R. F. Hampson, A. M. Schmoltner, “Present state of knowledge of the upper atmosphere 1993: an assessment report,” NASA Ref. Publ. 1337 (NASA, Washington, D.C., 1994). R. S. Stolarski, H. L. Wesoky, eds., “The atmospheric effects of stratospheric aircraft: a second program report,” NASA Ref. Publ. 1293 (NASA, Washington D.C., 1994).
  2. D. Baumgardner, A. Thompson, “Workshop summary aircraft mission measurement strategies for the NASA Subsonic Assessment Program,”, NCAR Tech. Note TN-411 (National Center for Atmospheric Research, Boulder, Colo., 1994).
  3. L. Newman, ed., Measurement Challenges in Atmospheric Chemistry (American Chemical Society, Washington, D.C., 1993).
    [CrossRef]
  4. R. P. Wayne, Chemistry of Atmospheres (Oxford U. Press, New York, 1991); G. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere (Reidel, Boston, 1986).
    [CrossRef]
  5. G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
    [CrossRef]
  6. A. Hinz, J. Pfeiffer, W. Bohle, W. Urban, “Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139 (1982).
    [CrossRef]
  7. J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a color centre laser,” Appl. Phys. B 26, 173–177 (1981).
    [CrossRef]
  8. W. Dillenschneider, R. F. Curl, “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc. 99, 87–97 (1983).
    [CrossRef]
  9. J. V. V. Kasper, C. R. Pollock, R. F. Curl, K. F. Tittel, “Observation of the 2P1/2 → 2P3/2 transition of the Br atom by color center laser spectroscopy,” Chem. Phys. Lett. 77, 211–213 (1981).
    [CrossRef]
  10. G. A. Laguna, “Source noise reduction in diode laser spectroscopy using the Faraday effect,” Appl. Opt. 23, 2155–2158 (1984).
    [CrossRef] [PubMed]
  11. H. Adams, D. Reinert, P. Kalkert, W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
    [CrossRef]
  12. G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
    [CrossRef]
  13. S. T. Sandholm, D. R. Karecki, G. W. Harris, “An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10155–10161 (1990).
    [CrossRef]
  14. B. A. Ridley, M. A. Carroll, G. L. Gregory, G. W. Sachse, “NO and NO2 in the troposphere: technique and measurements in regions of a folded tropopause,” J. Geophys. Res. 93, 15813–15830 (1988).
    [CrossRef]
  15. G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
    [CrossRef]
  16. H. I. Schiff, D. R. Karecki, G. W. Harris, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. 95, 10147–10153 (1990).
    [CrossRef]
  17. W.-B. Yan, “Infrared spectroscopy and kinetics of transient species,” Ph.D. dissertation (Rice University, Houston, 1987).
  18. A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
    [CrossRef]
  19. W. Herrmann, W. Rohrbeck, W. Urban, “Line shape analysis for Zeeman modulation spectroscopy,” Appl. Phys. 22, 71–75 (1980).
    [CrossRef]
  20. C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), pp. 286–287.
  21. W. H. Flygare, Molecular Structure and Dynamics (Prentice-Hall, Englewood Cliffs, N.J., 1978).
  22. M. N. Spencer, C. Chackerian, L. P.. Giver, L. R. Brown, “The nitric oxide fundamental band: frequency and shape parameters for rovibrational lines,” J. Mol. Spectrosc. 165, 506–524 (1994).
    [CrossRef]
  23. The factor used to convert from Debye to Coulomb meters is given by 10−18 (esu cm)/Debye/(2.9979258 × 109 esu/ Coulomb)(100 cm/m) = 3.3356396 × 10−30 (Coulomb m)/Debye.
  24. D. A. McQuarrie, Statistical Mechanics (Harper Collins, New York, 1976).
  25. D. B. Keck, “High resolution absorption, Zeeman and magnetic rotation spectra of the fundamental and satellite bands of nitric oxide in the near infrared,” Ph.D. dissertation (Michigan State University, East Lansing, Mich., 1967).
  26. A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer. 19, 509–516 (1978).
    [CrossRef]
  27. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in fortran (Cambridge U. Press, New York, 1990).
  28. C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. Measurers, ed., Vol. 94 of Chemical Analysis (Wiley-Interscience, New York, 1988), pp. 163–272.
  29. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
    [CrossRef]
  30. G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Pery, “Fast-response high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
    [CrossRef]
  31. J. Podolske, M. Loewenstein, “Airborne tunable diode laser spectrometer for trace-gas measurements in the lower stratosphere,” Appl. Opt. 32, 5324–5333 (1993).
    [CrossRef] [PubMed]
  32. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (Alias) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2 and HNO3,” Appl. Opt. 33, 454–472 (1994).
    [CrossRef] [PubMed]
  33. H. Bennett, J. Porteus, “Relationship between surface roughness and specular reflectance at normal incidence,” J. Opt. Soc. Am. 51, 123–129 (1961).
    [CrossRef]
  34. J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
    [CrossRef] [PubMed]
  35. M. Lowenstein, NASA Ames Research Center, Moffett Field, Calif., 94035–1000 (personal communication, December1994).
  36. D. B. Keck, C. D. Hause, “Magnetic-rotation spectrum of the 1–0 vibration–rotation band of nitric oxide,” J. Chem. Phys. 49, 3458–3464 (1968).
    [CrossRef]
  37. S. M. Freund, J. T. Hougen, W. J. Lafferty, “Laser magnetic spectra of 14NO2 and 15NO2 near 1600 cm−1,” Can. J. Phys. 53, 1929–1938 (1975).
    [CrossRef]
  38. R. A. Toth, “High-resolution measurements and analysis of 14N16O2 in the (001)–(000) and (011)–(010) bands,” J. Opt. Soc. Am. B 9, 433–461 (1992).
    [CrossRef]
  39. V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).
    [CrossRef]
  40. R. D. May, C. R. Webster, “Laboratory measurements of NO2 line parameters near 1600 cm−1 for the interpretation of stratospheric spectra,” Geophys. Res. Lett. 17, 2157–2160 (1990).
    [CrossRef]
  41. J. M. Smith, J. C. Bloch, R. W. Field, J. Steinfeld, “Trace detection of NO2 by frequency modulation enhanced magnetic rotation spectroscopy,” J. Opt. Soc. Am. B 12, 964–969 (1995).
    [CrossRef]
  42. D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).

1995 (1)

1994 (2)

C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (Alias) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2 and HNO3,” Appl. Opt. 33, 454–472 (1994).
[CrossRef] [PubMed]

M. N. Spencer, C. Chackerian, L. P.. Giver, L. R. Brown, “The nitric oxide fundamental band: frequency and shape parameters for rovibrational lines,” J. Mol. Spectrosc. 165, 506–524 (1994).
[CrossRef]

1993 (1)

1992 (1)

1990 (5)

R. D. May, C. R. Webster, “Laboratory measurements of NO2 line parameters near 1600 cm−1 for the interpretation of stratospheric spectra,” Geophys. Res. Lett. 17, 2157–2160 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

H. I. Schiff, D. R. Karecki, G. W. Harris, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. 95, 10147–10153 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

S. T. Sandholm, D. R. Karecki, G. W. Harris, “An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10155–10161 (1990).
[CrossRef]

1988 (1)

B. A. Ridley, M. A. Carroll, G. L. Gregory, G. W. Sachse, “NO and NO2 in the troposphere: technique and measurements in regions of a folded tropopause,” J. Geophys. Res. 93, 15813–15830 (1988).
[CrossRef]

1987 (1)

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Pery, “Fast-response high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

1984 (2)

G. A. Laguna, “Source noise reduction in diode laser spectroscopy using the Faraday effect,” Appl. Opt. 23, 2155–2158 (1984).
[CrossRef] [PubMed]

H. Adams, D. Reinert, P. Kalkert, W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

1983 (1)

W. Dillenschneider, R. F. Curl, “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc. 99, 87–97 (1983).
[CrossRef]

1982 (2)

A. Hinz, J. Pfeiffer, W. Bohle, W. Urban, “Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139 (1982).
[CrossRef]

V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).
[CrossRef]

1981 (4)

J. Altmann, R. Baumgart, C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20, 995–999 (1981).
[CrossRef] [PubMed]

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a color centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

J. V. V. Kasper, C. R. Pollock, R. F. Curl, K. F. Tittel, “Observation of the 2P1/2 → 2P3/2 transition of the Br atom by color center laser spectroscopy,” Chem. Phys. Lett. 77, 211–213 (1981).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

1980 (2)

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

W. Herrmann, W. Rohrbeck, W. Urban, “Line shape analysis for Zeeman modulation spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

1978 (1)

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer. 19, 509–516 (1978).
[CrossRef]

1975 (1)

S. M. Freund, J. T. Hougen, W. J. Lafferty, “Laser magnetic spectra of 14NO2 and 15NO2 near 1600 cm−1,” Can. J. Phys. 53, 1929–1938 (1975).
[CrossRef]

1968 (1)

D. B. Keck, C. D. Hause, “Magnetic-rotation spectrum of the 1–0 vibration–rotation band of nitric oxide,” J. Chem. Phys. 49, 3458–3464 (1968).
[CrossRef]

1966 (1)

A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

1961 (1)

Adams, H.

H. Adams, D. Reinert, P. Kalkert, W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

Altmann, J.

Armstrong, B. H.

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer. 19, 509–516 (1978).
[CrossRef]

Baumgardner, D.

D. Baumgardner, A. Thompson, “Workshop summary aircraft mission measurement strategies for the NASA Subsonic Assessment Program,”, NCAR Tech. Note TN-411 (National Center for Atmospheric Research, Boulder, Colo., 1994).

Baumgart, R.

Bennett, H.

Bloch, J. C.

Bohle, W.

A. Hinz, J. Pfeiffer, W. Bohle, W. Urban, “Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139 (1982).
[CrossRef]

Bradshaw, J.

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Bradshaw, S.

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

Brown, L. R.

M. N. Spencer, C. Chackerian, L. P.. Giver, L. R. Brown, “The nitric oxide fundamental band: frequency and shape parameters for rovibrational lines,” J. Mol. Spectrosc. 165, 506–524 (1994).
[CrossRef]

Buckingham, A. D.

A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Carroll, M. A.

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

B. A. Ridley, M. A. Carroll, G. L. Gregory, G. W. Sachse, “NO and NO2 in the troposphere: technique and measurements in regions of a folded tropopause,” J. Geophys. Res. 93, 15813–15830 (1988).
[CrossRef]

Chackerian, C.

M. N. Spencer, C. Chackerian, L. P.. Giver, L. R. Brown, “The nitric oxide fundamental band: frequency and shape parameters for rovibrational lines,” J. Mol. Spectrosc. 165, 506–524 (1994).
[CrossRef]

Chave, R. G.

Curl, R. F.

W. Dillenschneider, R. F. Curl, “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc. 99, 87–97 (1983).
[CrossRef]

J. V. V. Kasper, C. R. Pollock, R. F. Curl, K. F. Tittel, “Observation of the 2P1/2 → 2P3/2 transition of the Br atom by color center laser spectroscopy,” Chem. Phys. Lett. 77, 211–213 (1981).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Davis, D. D.

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Devi, V. M.

V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).
[CrossRef]

Dillenschneider, W.

W. Dillenschneider, R. F. Curl, “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc. 99, 87–97 (1983).
[CrossRef]

Field, R. W.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in fortran (Cambridge U. Press, New York, 1990).

Flygare, W. H.

W. H. Flygare, Molecular Structure and Dynamics (Prentice-Hall, Englewood Cliffs, N.J., 1978).

Freund, S. M.

S. M. Freund, J. T. Hougen, W. J. Lafferty, “Laser magnetic spectra of 14NO2 and 15NO2 near 1600 cm−1,” Can. J. Phys. 53, 1929–1938 (1975).
[CrossRef]

Fridovich, B.

V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).
[CrossRef]

Fried, A.

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Giver, L. P..

M. N. Spencer, C. Chackerian, L. P.. Giver, L. R. Brown, “The nitric oxide fundamental band: frequency and shape parameters for rovibrational lines,” J. Mol. Spectrosc. 165, 506–524 (1994).
[CrossRef]

Gregory, G. L.

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

B. A. Ridley, M. A. Carroll, G. L. Gregory, G. W. Sachse, “NO and NO2 in the troposphere: technique and measurements in regions of a folded tropopause,” J. Geophys. Res. 93, 15813–15830 (1988).
[CrossRef]

Hampson, R. F.

M. J. Kurylo, J. A. Kaye, R. F. Hampson, A. M. Schmoltner, “Present state of knowledge of the upper atmosphere 1993: an assessment report,” NASA Ref. Publ. 1337 (NASA, Washington, D.C., 1994). R. S. Stolarski, H. L. Wesoky, eds., “The atmospheric effects of stratospheric aircraft: a second program report,” NASA Ref. Publ. 1293 (NASA, Washington D.C., 1994).

Harris, G. W.

S. T. Sandholm, D. R. Karecki, G. W. Harris, “An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10155–10161 (1990).
[CrossRef]

H. I. Schiff, D. R. Karecki, G. W. Harris, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. 95, 10147–10153 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Hastie, D. R.

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Hause, C. D.

D. B. Keck, C. D. Hause, “Magnetic-rotation spectrum of the 1–0 vibration–rotation band of nitric oxide,” J. Chem. Phys. 49, 3458–3464 (1968).
[CrossRef]

Herrmann, W.

W. Herrmann, W. Rohrbeck, W. Urban, “Line shape analysis for Zeeman modulation spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

Hill, G. F.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Pery, “Fast-response high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Hinkley, E. D.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. Measurers, ed., Vol. 94 of Chemical Analysis (Wiley-Interscience, New York, 1988), pp. 163–272.

Hinz, A.

A. Hinz, J. Pfeiffer, W. Bohle, W. Urban, “Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139 (1982).
[CrossRef]

Hoell, J. M.

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Hougen, J. T.

S. M. Freund, J. T. Hougen, W. J. Lafferty, “Laser magnetic spectra of 14NO2 and 15NO2 near 1600 cm−1,” Can. J. Phys. 53, 1929–1938 (1975).
[CrossRef]

Hui, A. K.

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer. 19, 509–516 (1978).
[CrossRef]

Jones, G. D.

V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).
[CrossRef]

Kalkert, P.

H. Adams, D. Reinert, P. Kalkert, W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a color centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Karecki, D. R.

S. T. Sandholm, D. R. Karecki, G. W. Harris, “An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10155–10161 (1990).
[CrossRef]

H. I. Schiff, D. R. Karecki, G. W. Harris, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. 95, 10147–10153 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Kasper, J. V. V.

J. V. V. Kasper, C. R. Pollock, R. F. Curl, K. F. Tittel, “Observation of the 2P1/2 → 2P3/2 transition of the Br atom by color center laser spectroscopy,” Chem. Phys. Lett. 77, 211–213 (1981).
[CrossRef]

Kaye, J. A.

M. J. Kurylo, J. A. Kaye, R. F. Hampson, A. M. Schmoltner, “Present state of knowledge of the upper atmosphere 1993: an assessment report,” NASA Ref. Publ. 1337 (NASA, Washington, D.C., 1994). R. S. Stolarski, H. L. Wesoky, eds., “The atmospheric effects of stratospheric aircraft: a second program report,” NASA Ref. Publ. 1293 (NASA, Washington D.C., 1994).

Keck, D. B.

D. B. Keck, C. D. Hause, “Magnetic-rotation spectrum of the 1–0 vibration–rotation band of nitric oxide,” J. Chem. Phys. 49, 3458–3464 (1968).
[CrossRef]

D. B. Keck, “High resolution absorption, Zeeman and magnetic rotation spectra of the fundamental and satellite bands of nitric oxide in the near infrared,” Ph.D. dissertation (Michigan State University, East Lansing, Mich., 1967).

Kendall, J.

Kirsten, D.

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a color centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Kliger, D. S.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).

Kurylo, M. J.

M. J. Kurylo, J. A. Kaye, R. F. Hampson, A. M. Schmoltner, “Present state of knowledge of the upper atmosphere 1993: an assessment report,” NASA Ref. Publ. 1337 (NASA, Washington, D.C., 1994). R. S. Stolarski, H. L. Wesoky, eds., “The atmospheric effects of stratospheric aircraft: a second program report,” NASA Ref. Publ. 1293 (NASA, Washington D.C., 1994).

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Lafferty, W. J.

S. M. Freund, J. T. Hougen, W. J. Lafferty, “Laser magnetic spectra of 14NO2 and 15NO2 near 1600 cm−1,” Can. J. Phys. 53, 1929–1938 (1975).
[CrossRef]

Laguna, G. A.

Lewis, J. W.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).

Litfin, G.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Loewenstein, M.

Lowenstein, M.

M. Lowenstein, NASA Ames Research Center, Moffett Field, Calif., 94035–1000 (personal communication, December1994).

Mackay, G. I.

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

May, R. D.

C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (Alias) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2 and HNO3,” Appl. Opt. 33, 454–472 (1994).
[CrossRef] [PubMed]

R. D. May, C. R. Webster, “Laboratory measurements of NO2 line parameters near 1600 cm−1 for the interpretation of stratospheric spectra,” Geophys. Res. Lett. 17, 2157–2160 (1990).
[CrossRef]

McQuarrie, D. A.

D. A. McQuarrie, Statistical Mechanics (Harper Collins, New York, 1976).

Menzies, R. T.

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. Measurers, ed., Vol. 94 of Chemical Analysis (Wiley-Interscience, New York, 1988), pp. 163–272.

Pery, M. G.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Pery, “Fast-response high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Pfeiffer, J.

A. Hinz, J. Pfeiffer, W. Bohle, W. Urban, “Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139 (1982).
[CrossRef]

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a color centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

Podolske, J.

Pollock, C. R.

J. V. V. Kasper, C. R. Pollock, R. F. Curl, K. F. Tittel, “Observation of the 2P1/2 → 2P3/2 transition of the Br atom by color center laser spectroscopy,” Chem. Phys. Lett. 77, 211–213 (1981).
[CrossRef]

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Porteus, J.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in fortran (Cambridge U. Press, New York, 1990).

Randall, C. E.

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Reinert, D.

H. Adams, D. Reinert, P. Kalkert, W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

Ridley, B. A.

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

B. A. Ridley, M. A. Carroll, G. L. Gregory, G. W. Sachse, “NO and NO2 in the troposphere: technique and measurements in regions of a folded tropopause,” J. Geophys. Res. 93, 15813–15830 (1988).
[CrossRef]

Rodgers, J.

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

Rodgers, M. O.

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Rohrbeck, W.

W. Herrmann, W. Rohrbeck, W. Urban, “Line shape analysis for Zeeman modulation spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

Sachse, G. W.

B. A. Ridley, M. A. Carroll, G. L. Gregory, G. W. Sachse, “NO and NO2 in the troposphere: technique and measurements in regions of a folded tropopause,” J. Geophys. Res. 93, 15813–15830 (1988).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Pery, “Fast-response high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Sandholm, S. T.

S. T. Sandholm, D. R. Karecki, G. W. Harris, “An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10155–10161 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Schawlow, A. L.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), pp. 286–287.

Schiff, H. I.

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

H. I. Schiff, D. R. Karecki, G. W. Harris, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. 95, 10147–10153 (1990).
[CrossRef]

Schmoltner, A. M.

M. J. Kurylo, J. A. Kaye, R. F. Hampson, A. M. Schmoltner, “Present state of knowledge of the upper atmosphere 1993: an assessment report,” NASA Ref. Publ. 1337 (NASA, Washington, D.C., 1994). R. S. Stolarski, H. L. Wesoky, eds., “The atmospheric effects of stratospheric aircraft: a second program report,” NASA Ref. Publ. 1293 (NASA, Washington D.C., 1994).

Smith, J. M.

Snyder, D. G. S.

V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).
[CrossRef]

Spencer, M. N.

M. N. Spencer, C. Chackerian, L. P.. Giver, L. R. Brown, “The nitric oxide fundamental band: frequency and shape parameters for rovibrational lines,” J. Mol. Spectrosc. 165, 506–524 (1994).
[CrossRef]

Steinfeld, J.

Stephens, P. J.

A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in fortran (Cambridge U. Press, New York, 1990).

Thompson, A.

D. Baumgardner, A. Thompson, “Workshop summary aircraft mission measurement strategies for the NASA Subsonic Assessment Program,”, NCAR Tech. Note TN-411 (National Center for Atmospheric Research, Boulder, Colo., 1994).

Tittel, F. K.

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

Tittel, K. F.

J. V. V. Kasper, C. R. Pollock, R. F. Curl, K. F. Tittel, “Observation of the 2P1/2 → 2P3/2 transition of the Br atom by color center laser spectroscopy,” Chem. Phys. Lett. 77, 211–213 (1981).
[CrossRef]

Torres, A. L.

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

Toth, R. A.

Townes, C. H.

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), pp. 286–287.

Trimble, C. A.

Urban, W.

H. Adams, D. Reinert, P. Kalkert, W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

A. Hinz, J. Pfeiffer, W. Bohle, W. Urban, “Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139 (1982).
[CrossRef]

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a color centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

W. Herrmann, W. Rohrbeck, W. Urban, “Line shape analysis for Zeeman modulation spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in fortran (Cambridge U. Press, New York, 1990).

Wade, L. O.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Pery, “Fast-response high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

Wayne, R. P.

R. P. Wayne, Chemistry of Atmospheres (Oxford U. Press, New York, 1991); G. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere (Reidel, Boston, 1986).
[CrossRef]

Webster, C. R.

C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (Alias) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2 and HNO3,” Appl. Opt. 33, 454–472 (1994).
[CrossRef] [PubMed]

R. D. May, C. R. Webster, “Laboratory measurements of NO2 line parameters near 1600 cm−1 for the interpretation of stratospheric spectra,” Geophys. Res. Lett. 17, 2157–2160 (1990).
[CrossRef]

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. Measurers, ed., Vol. 94 of Chemical Analysis (Wiley-Interscience, New York, 1988), pp. 163–272.

Weitkamp, C.

Wray, A. A.

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer. 19, 509–516 (1978).
[CrossRef]

Yan, W.-B.

W.-B. Yan, “Infrared spectroscopy and kinetics of transient species,” Ph.D. dissertation (Rice University, Houston, 1987).

Ann. Rev. Phys. Chem. (1)

A. D. Buckingham, P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem. 17, 399–432 (1966).
[CrossRef]

Appl. Phys. (1)

W. Herrmann, W. Rohrbeck, W. Urban, “Line shape analysis for Zeeman modulation spectroscopy,” Appl. Phys. 22, 71–75 (1980).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (3)

H. Adams, D. Reinert, P. Kalkert, W. Urban, “A differential detection scheme for Faraday rotation spectroscopy with a color center laser,” Appl. Phys. B 34, 179–185 (1984).
[CrossRef]

J. Pfeiffer, D. Kirsten, P. Kalkert, W. Urban, “Sensitive magnetic rotation spectroscopy of the OH free radical fundamental band with a color centre laser,” Appl. Phys. B 26, 173–177 (1981).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
[CrossRef]

Can. J. Phys. (1)

S. M. Freund, J. T. Hougen, W. J. Lafferty, “Laser magnetic spectra of 14NO2 and 15NO2 near 1600 cm−1,” Can. J. Phys. 53, 1929–1938 (1975).
[CrossRef]

Chem. Phys. Lett. (1)

J. V. V. Kasper, C. R. Pollock, R. F. Curl, K. F. Tittel, “Observation of the 2P1/2 → 2P3/2 transition of the Br atom by color center laser spectroscopy,” Chem. Phys. Lett. 77, 211–213 (1981).
[CrossRef]

Geophys. Res. Lett. (1)

R. D. May, C. R. Webster, “Laboratory measurements of NO2 line parameters near 1600 cm−1 for the interpretation of stratospheric spectra,” Geophys. Res. Lett. 17, 2157–2160 (1990).
[CrossRef]

J. Geophys. Res. (1)

H. I. Schiff, D. R. Karecki, G. W. Harris, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. 95, 10147–10153 (1990).
[CrossRef]

J. Mol. Spectrosc (1)

V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).
[CrossRef]

J. Chem. Phys (1)

G. Litfin, C. R. Pollock, R. F. Curl, F. K. Tittel, “Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980).
[CrossRef]

J. Chem. Phys. (1)

D. B. Keck, C. D. Hause, “Magnetic-rotation spectrum of the 1–0 vibration–rotation band of nitric oxide,” J. Chem. Phys. 49, 3458–3464 (1968).
[CrossRef]

J. Geophys. Res (1)

G. L. Gregory, J. M. Hoell, A. L. Torres, M. A. Carroll, B. A. Ridley, J. Rodgers, S. Bradshaw, D. D. Davis, “An intercomparison of airborne nitric oxide measurements,” J. Geophys. Res. 95, 10129–10138 (1990).
[CrossRef]

J. Geophys. Res. (1)

G. L. Gregory, J. M. Hoell, M. A. Carroll, B. A. Ridley, D. D. Davis, J. Bradshaw, M. O. Rodgers, S. T. Sandholm, H. I. Schiff, D. R. Hastie, D. R. Karecki, G. I. Mackay, G. W. Harris, A. L. Torres, A. Fried, “An intercomparison of airborne nitrogen dioxide instruments,” J. Geophys. Res. 95, 10103–10127 (1990).
[CrossRef]

J. Geophys. Res (1)

S. T. Sandholm, D. R. Karecki, G. W. Harris, “An airborne compatible photofragmentation two-photon laser-induced fluorescence instrument for measuring background tropospheric levels of NO, NOx, and NO2,” J. Geophys. Res. 95, 10155–10161 (1990).
[CrossRef]

J. Geophys. Res. (2)

B. A. Ridley, M. A. Carroll, G. L. Gregory, G. W. Sachse, “NO and NO2 in the troposphere: technique and measurements in regions of a folded tropopause,” J. Geophys. Res. 93, 15813–15830 (1988).
[CrossRef]

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Pery, “Fast-response high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987).
[CrossRef]

J. Mol. Spectrosc (1)

W. Dillenschneider, R. F. Curl, “Color center laser spectroscopy of ν1 + ν2 + ν3 of NO2 using magnetic rotation,” J. Mol. Spectrosc. 99, 87–97 (1983).
[CrossRef]

J. Mol. Spectrosc. (1)

M. N. Spencer, C. Chackerian, L. P.. Giver, L. R. Brown, “The nitric oxide fundamental band: frequency and shape parameters for rovibrational lines,” J. Mol. Spectrosc. 165, 506–524 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Quant. Spectrosc. Radiat. Transfer. (1)

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid computation of the Voigt and complex error functions,” J. Quant. Spectrosc. Radiat. Transfer. 19, 509–516 (1978).
[CrossRef]

Mol. Phys. (1)

A. Hinz, J. Pfeiffer, W. Bohle, W. Urban, “Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection,” Mol. Phys. 45, 1131–1139 (1982).
[CrossRef]

Other (14)

M. J. Kurylo, J. A. Kaye, R. F. Hampson, A. M. Schmoltner, “Present state of knowledge of the upper atmosphere 1993: an assessment report,” NASA Ref. Publ. 1337 (NASA, Washington, D.C., 1994). R. S. Stolarski, H. L. Wesoky, eds., “The atmospheric effects of stratospheric aircraft: a second program report,” NASA Ref. Publ. 1293 (NASA, Washington D.C., 1994).

D. Baumgardner, A. Thompson, “Workshop summary aircraft mission measurement strategies for the NASA Subsonic Assessment Program,”, NCAR Tech. Note TN-411 (National Center for Atmospheric Research, Boulder, Colo., 1994).

L. Newman, ed., Measurement Challenges in Atmospheric Chemistry (American Chemical Society, Washington, D.C., 1993).
[CrossRef]

R. P. Wayne, Chemistry of Atmospheres (Oxford U. Press, New York, 1991); G. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere (Reidel, Boston, 1986).
[CrossRef]

W.-B. Yan, “Infrared spectroscopy and kinetics of transient species,” Ph.D. dissertation (Rice University, Houston, 1987).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in fortran (Cambridge U. Press, New York, 1990).

C. R. Webster, R. T. Menzies, E. D. Hinkley, “Infrared laser absorption: theory and applications,” in Laser Remote Chemical Analysis, R. Measurers, ed., Vol. 94 of Chemical Analysis (Wiley-Interscience, New York, 1988), pp. 163–272.

M. Lowenstein, NASA Ames Research Center, Moffett Field, Calif., 94035–1000 (personal communication, December1994).

The factor used to convert from Debye to Coulomb meters is given by 10−18 (esu cm)/Debye/(2.9979258 × 109 esu/ Coulomb)(100 cm/m) = 3.3356396 × 10−30 (Coulomb m)/Debye.

D. A. McQuarrie, Statistical Mechanics (Harper Collins, New York, 1976).

D. B. Keck, “High resolution absorption, Zeeman and magnetic rotation spectra of the fundamental and satellite bands of nitric oxide in the near infrared,” Ph.D. dissertation (Michigan State University, East Lansing, Mich., 1967).

C. H. Townes, A. L. Schawlow, Microwave Spectroscopy (Dover, New York, 1975), pp. 286–287.

W. H. Flygare, Molecular Structure and Dynamics (Prentice-Hall, Englewood Cliffs, N.J., 1978).

D. S. Kliger, J. W. Lewis, C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, New York, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Laboratory coordinate system for the magnetic rotation spectrometer. The axis of the linear polarizer and the E field of the throughput laser light lie along the X axis. The propagation vector and the solenoid’s magnetic field lie along the Z axis. The primed coordinates of the analyzer result from rotation of the analyzer’s polarization axis (X′) to near-perpendicular crossing with respect to the polarizer (Y). The angle between X′ and Y is ϕ.

Fig. 2
Fig. 2

Plots of MRS signal [Eq. (5)], noise [Eq. (4)], and their ratio as a function of ϕ for the 23/2 Q(3/2), υ = 1 ← 0 transition of NO. The calculations were performed based on the assumption of a path length of 12 cm, 20 mbars of 0.39% NO in N2, a 105-G field, laser noise ratio (γ) of 10−5, a polarization extinction ratio of 10−5, and a RΔ value of 0.140 1/m. It is assumed that the noise is due only to laser excess noise. The optimum value of ϕ is 0.1°.

Fig. 3
Fig. 3

Zeeman energy level pattern for a Hund’s case (a) 23/2, J = 3/2, and v = 0, 1 levels. The transitions indicated by the arrows are for Q(3/2), ΔMJ = ±1 transitions.

Fig. 4
Fig. 4

Schematic for the lead-salt diode-laser-based magnetic rotation spectrometer used in these experiments. D/A, digital–analog; A/D, analog–digital.

Fig. 5
Fig. 5

Overlay of simulated (solid curve) and experimental (open circles) line shapes for the NO 23/2 Q(3/2), v = 1 ← 0 transition. The gas sample was of 20 mbars of 0.39% NO in N2 at 296 K over a 12-cm path length. The peak field strength was 106 G. The analyzer angle was 85° with respect to the incident polarization. Detector #1 was used. The lock-in detection was 1f at the field-modulation frequency of 922 Hz with a 100-ms time constant.

Fig. 6
Fig. 6

Overlay of simulated (solid curve) and experimental 1open circles2 line shapes for the NO 23/2 Q(3/2), v = 1 0 transition. The gas sample was of 20 mbars of 0.39% NO in N2 at 296 K over a 12-cm path length. The peak field strength was 339 G. The analyzer angle was 85° with respect to the incident polarization. Detector #1 was used. The lock-in detection was 1f at the field-modulation frequency of 922 Hz with a 100-ms time constant.

Fig. 7
Fig. 7

Magnetic field strength that optimizes the magnetic rotation signal as a function of total sample pressure at 296 K for the 23/2 Q(3/2), v = 1 ← 0 transition of NO.

Fig. 8
Fig. 8

Calculated optimum magnetic rotation signal strength as a function of total sample pressure for the 23/2 Q(3/2), v = 1 ← 0 transition of NO. Calculation performed with 0.39% NO in N2 concentration (pressure broadening 0.0654 cm−1/atm), path length 12 cm, temperature 296 K, and analyzer angle 85° with respect to the incident polarization.

Fig. 9
Fig. 9

Total noise density for the diode-laser MRS spectrometer as a function of analyzer angle θ. Detector #2 was used to collect the noise data; it was fitted with liquid-nitrogen-cooled FOV shields of 10° (open squares) and 60° (open circles). The laser frequency was fixed at 1875.8 cm−1 with 11 μW of power.

Fig. 10
Fig. 10

Magnetic rotation spectrum of the Q-branch region of NO. The gas sample was 67 mbars of 4 ppm NO in N2 with a 12-cm path length. The peak magnetic-field strength was 141 G and the analyzer angle was 85°. The lock-in detection was 1f at 922 Hz, with a 100-ms time constant.

Fig. 11
Fig. 11

Wavelength-modulated spectrum of the Q-branch region of NO. The gas sample was 67 mbars of 4 ppm NO in N2 with a 12-cm path length. The lock-in detection was 2f at 1.8 kHz, with a 100-ms time constant.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 2 exp ( 2 L I A ) [ cosh ( I Δ L ) cos ( L R Δ + 2 ϕ ) ] ,
R Δ = k 0 ( n + n ) ,
I = I 0 2 ( 1 cos  2 ϕ  + R Δ L   sin   2 ϕ ) .
N = γ [ ( I 0 2 ) ( 1   cos   2 ϕ + I 0 ξ ) ] .
S = I 0 2 R Δ L   sin   2 ϕ .
ϕ opt = 1 2 cos 1 ( 1 1 + 2 ξ ) .
R Δ = M J { R + ( M J ) R ( M J ) } ,
R ± ( M J ) = ( N i g i j μ i j i 2 2 u 0 ) Re   Z { ( Δ ν ± + i Δ ) λ u } ,
Δ ν ± = ν ν 0 g β B ,
Z ( ζ ) = 1 π + exp ( t 2 ) t ζ d t .
B = B 0   cos  ω t .
H 1 ( ± ) = 2 π 0 π Re   Z { ( ν ν 0 g β B 0  cos θ  + i Δ ) λ u }     ×  cos θdθ .
j μ X ± i μ Y i 2 = υ μ z υ 2 J , Ω , M j λ X          ± i λ Y J , Ω , M J 2 ,
J , Ω , M J λ X ± i λ Y J , Ω , M J 2           = Ω 2 ( J M ) ( J ± M + 1 ) 4 J 2 ( J + 1 ) 2 .
j μ X ± i μ Y i 2 = 6 . 6116 × 10 62 C 2 m 2 ( 2 / 5 ) .
N i = T 0 T N L g elec g vib g rot g Zeeman    × exp [ h c E n k T ] exp [ h c E i k T ] Q elec Q vib Q rot Q Zeeman ,
exp [ h c E i k T ] Q Zeeman 1 ( 2 J + 1 ) .
V noise = [ A 0 2 + A 1 2 cos 2 ( θ  +  ψ )    + A 2 2 cos 4 ( θ   +   ψ ) ] 1 / 2 ,
V noise = { A 0 2 + A 1 2 [ cos ( θ + ψ ) + ξ ] 2     + A 2 2 [ cos ( θ + ψ ) + ξ ] 4 } 1 / 2 ,
S / N ( 45 ° method ) S / N ( 90 ° method ) = ξ g ,
E = E 0   exp [ i ( k r ω t ) ] e 1 ,
E = E + + E = 1 2 E 0 { ( 1 i ) exp [ i ( k + Z ω t ) ]        + ( 1 i ) exp [ i ( k Z ω t ) ] } ,
k ± = k 0 ( n ± + i k ± ) ,
E = E 0 2 exp ( i ω t ) [ cos   2 χ sin  χcos  χ sin  χcos  χ sin 2 χ ]        × { ( 1 i ) exp ( i k + Z ) + ( 1 1 ) exp ( i k Z ) } ,
[ cos 2   χ  sin χ cos χ  sin χ cos χ  sin 2   χ ]
I = S = c 2 0 2 Re ( E × B * ) ,
B * = 1 c ( e 3 × E ) * .
I = c 0 2 E 0 2 2 ( 1 2 [ exp ( 2 k 0 κ + Z ) + exp ( 2 k 0 κ Z ) ]        exp [ k 0 ( κ + + κ ) Z ] { cos [ k 0 ( n + n ) Z + 2 ϕ ] } ) .
R Δ = k 0 ( n + n ) ,
I = I 0 2 exp ( 2 L I A ) [ cosh ( I Δ L ) cos ( L R Δ + 2 ϕ ) ] .

Metrics