Abstract

Mid-infrared magnetic rotation spectroscopy (MRS) experiments on nitric oxide (NO) are quantitatively modeled by theoretical calculations. The verified theory is used to specify an instrument that can make in situ measurements on NO and NO2 in the Earth’s atmosphere at a sensitivity level of a few parts in 1012 by volume per second. The prototype instrument used in the experiments has an extrapolated detection limit for NO of 30 parts in 109 for a 1-s integration time over a 12-cm path length. The detection limit is an extrapolation of experimental results to a signal-to-noise ratio of one, where the noise is considered to be one-half the peak-to-peak baseline noise. Also discussed are the various factors that can limit the sensitivity of a MRS spectrometer that uses liquid-nitrogen-cooled lead-salt diode lasers and photovoltaic detectors.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription