Abstract

We demonstrate the use of a single prism for adjustable dispersion compensation in a mode-locked laser cavity, instead of the standard approach with a prism pair. A simple model based on the prism-pair configuration is presented to determine the group-velocity dispersion by use of ray optics to trace the wavelength-dependent optical axes through the cavity. We experimentally demonstrated this concept with a passively mode-locked diode-pumped Nd:glass laser producing 200-fs pulses with a 200-mW average output power, using only one intracavity prism. The advantages of such a cavity design are simple alignment, reduced loss, and lossless wavelength tunability This technique can be generalized to other angularly dispersive elements such as prismatic output couplers.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, O. E. Martinez, J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
    [CrossRef] [PubMed]
  2. J. J. Fontaine, W. Dietel, J. C. Diels, “Chirp in a mode-locked ring dye laser,” IEEE J. Quantum Electron. QE-19, 1467–1469 (1983).
    [CrossRef]
  3. O. E. Martinez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296–300 (1989).
    [CrossRef]
  4. O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
    [CrossRef]
  5. A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148–1157 (1990).
    [CrossRef]
  6. M. Ramaswamy-Paye, J. G. Fujimoto, “Compact dispersion-compensating geometry for Kerr-lens mode-locked femtosecond lasers,” Opt. Lett. 19, 1756–1758 (1994).
    [CrossRef] [PubMed]
  7. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]
  8. For completeness, the lasing condition requires not only the existence of an eigenvector to the total round-trip matrix, but also the stability of the Gaussian mode solution against perturbations (see Refs. 12 and 13, below).
  9. The second and the third (exchanged elements A and D) matrices in inequality (3) represent forward and backward propagation through the CO’s, respectively.
  10. D. Kopf, G. J. Spühler, K. J. Weingarten, U. Keller, “Mode-locked laser cavities with a single refractive element,” in Conference on Lasers and Electro-Optics, Vol. 13 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 322.
  11. D. Kopf, F. X. Kärtner, K. J. Weingarten, U. Keller, “Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 20, 1169–1171 (1995).
    [CrossRef] [PubMed]
  12. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 815.
  13. L. W. Casperson, “Mode stability of lasers and periodic optical systems,” IEEE J. Quantum Electron. QE-10, 629–634 (1974).
    [CrossRef]

1995 (1)

1994 (1)

1990 (1)

A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148–1157 (1990).
[CrossRef]

1989 (1)

O. E. Martinez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296–300 (1989).
[CrossRef]

1988 (1)

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[CrossRef]

1984 (1)

1983 (1)

J. J. Fontaine, W. Dietel, J. C. Diels, “Chirp in a mode-locked ring dye laser,” IEEE J. Quantum Electron. QE-19, 1467–1469 (1983).
[CrossRef]

1974 (1)

L. W. Casperson, “Mode stability of lasers and periodic optical systems,” IEEE J. Quantum Electron. QE-10, 629–634 (1974).
[CrossRef]

1966 (1)

Casperson, L. W.

L. W. Casperson, “Mode stability of lasers and periodic optical systems,” IEEE J. Quantum Electron. QE-10, 629–634 (1974).
[CrossRef]

Diels, J. C.

J. J. Fontaine, W. Dietel, J. C. Diels, “Chirp in a mode-locked ring dye laser,” IEEE J. Quantum Electron. QE-19, 1467–1469 (1983).
[CrossRef]

Dietel, W.

J. J. Fontaine, W. Dietel, J. C. Diels, “Chirp in a mode-locked ring dye laser,” IEEE J. Quantum Electron. QE-19, 1467–1469 (1983).
[CrossRef]

Fontaine, J. J.

J. J. Fontaine, W. Dietel, J. C. Diels, “Chirp in a mode-locked ring dye laser,” IEEE J. Quantum Electron. QE-19, 1467–1469 (1983).
[CrossRef]

Fork, R. L.

Fujimoto, J. G.

Gordon, J. P.

Kärtner, F. X.

Keller, U.

D. Kopf, F. X. Kärtner, K. J. Weingarten, U. Keller, “Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 20, 1169–1171 (1995).
[CrossRef] [PubMed]

D. Kopf, G. J. Spühler, K. J. Weingarten, U. Keller, “Mode-locked laser cavities with a single refractive element,” in Conference on Lasers and Electro-Optics, Vol. 13 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 322.

Kogelnik, H.

Kopf, D.

D. Kopf, F. X. Kärtner, K. J. Weingarten, U. Keller, “Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 20, 1169–1171 (1995).
[CrossRef] [PubMed]

D. Kopf, G. J. Spühler, K. J. Weingarten, U. Keller, “Mode-locked laser cavities with a single refractive element,” in Conference on Lasers and Electro-Optics, Vol. 13 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 322.

Kostenbauder, A. G.

A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148–1157 (1990).
[CrossRef]

Li, T.

Martinez, O. E.

O. E. Martinez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296–300 (1989).
[CrossRef]

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[CrossRef]

R. L. Fork, O. E. Martinez, J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984).
[CrossRef] [PubMed]

Ramaswamy-Paye, M.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 815.

Spühler, G. J.

D. Kopf, G. J. Spühler, K. J. Weingarten, U. Keller, “Mode-locked laser cavities with a single refractive element,” in Conference on Lasers and Electro-Optics, Vol. 13 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 322.

Weingarten, K. J.

D. Kopf, F. X. Kärtner, K. J. Weingarten, U. Keller, “Diode-pumped mode-locked Nd:glass lasers with an antiresonant Fabry–Perot saturable absorber,” Opt. Lett. 20, 1169–1171 (1995).
[CrossRef] [PubMed]

D. Kopf, G. J. Spühler, K. J. Weingarten, U. Keller, “Mode-locked laser cavities with a single refractive element,” in Conference on Lasers and Electro-Optics, Vol. 13 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 322.

Appl. Opt. (1)

IEEE J. Quantum Electron. (5)

J. J. Fontaine, W. Dietel, J. C. Diels, “Chirp in a mode-locked ring dye laser,” IEEE J. Quantum Electron. QE-19, 1467–1469 (1983).
[CrossRef]

O. E. Martinez, “Matrix formalism for dispersive laser cavities,” IEEE J. Quantum Electron. 25, 296–300 (1989).
[CrossRef]

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988).
[CrossRef]

A. G. Kostenbauder, “Ray-pulse matrices: a rational treatment for dispersive optical systems,” IEEE J. Quantum Electron. 26, 1148–1157 (1990).
[CrossRef]

L. W. Casperson, “Mode stability of lasers and periodic optical systems,” IEEE J. Quantum Electron. QE-10, 629–634 (1974).
[CrossRef]

Opt. Lett. (3)

Other (4)

For completeness, the lasing condition requires not only the existence of an eigenvector to the total round-trip matrix, but also the stability of the Gaussian mode solution against perturbations (see Refs. 12 and 13, below).

The second and the third (exchanged elements A and D) matrices in inequality (3) represent forward and backward propagation through the CO’s, respectively.

D. Kopf, G. J. Spühler, K. J. Weingarten, U. Keller, “Mode-locked laser cavities with a single refractive element,” in Conference on Lasers and Electro-Optics, Vol. 13 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 322.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 815.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Single-prism laser layout. (b) The prism-pair approach with the first prism, P1, at intersection point X has GVD equivalent to the single-prism setup. OC’s, output couplers.

Fig. 2
Fig. 2

(a) Diode-pumped mode-locked single-prism Nd:glass laser. (a) Plot of the optical axes with different wavelengths as they propagate through the cavity. (c) Autocorrelation and pulse spectrum as obtained from the above setup. ROC’s, radii of curvature; M1, M2, mirrors; A-FPSA’s, antiresonant Fabry–Perot saturable absorbers.

Fig. 3
Fig. 3

(a) Simple way of looking at slightly changed boundary conditions with a curved cavity EM instead of a flat one. (b) The setup in (a) can also be modeled with an adapted ABCD matrix for the CO’s. (c) Instead of a prism at the cavity end, a prismatic OC or—even more compact—a flat/Brewster-cut gain medium can be used.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( r 0 ) ( A r C r ) = [ A B C D ] × ( r 0 )
D L + f = L ( A / C ) ,
[ 1 D 0 1 ] [ A B C D ] [ D B C A ] [ 1 D 0 1 ] [ 1 0 0 1 ]    0

Metrics