Abstract

We compared multiple-quantum-well modulator-based smart pixels and vertical-cavity-surface-emitting laser (VCSEL) based smart pixels in terms of optical switching power, switching speed, and electric-power consumption. Optoelectronic circuits integrating GaAs field-effect transistors are designed for smart pixels of both types under the condition that each pixel has an optical threshold and gain. It is shown that both types perform maximum throughput of ∼3 Tbps/cm2. In regard to design flexibility, the modulator type is advantageous because switching time can be reduced by supplying large electric power, whereas switching time and electric-power consumption are limited to larger than certain values in the VCSEL type. In contrast, in regard to optical implementation, the VCSEL type is advantageous because it does not need an external bias-light source, whereas the modulator type needs bias-light arrays that must be precisely located because the small modulator diameter, <10 μm, is essential to high-speed operation. A bias-light source that increases the total power consumption of the system may offset the advantages of the modulator type.

© 1996 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription