Abstract

We compared multiple-quantum-well modulator-based smart pixels and vertical-cavity-surface-emitting laser (VCSEL) based smart pixels in terms of optical switching power, switching speed, and electric-power consumption. Optoelectronic circuits integrating GaAs field-effect transistors are designed for smart pixels of both types under the condition that each pixel has an optical threshold and gain. It is shown that both types perform maximum throughput of ∼3 Tbps/cm2. In regard to design flexibility, the modulator type is advantageous because switching time can be reduced by supplying large electric power, whereas switching time and electric-power consumption are limited to larger than certain values in the VCSEL type. In contrast, in regard to optical implementation, the VCSEL type is advantageous because it does not need an external bias-light source, whereas the modulator type needs bias-light arrays that must be precisely located because the small modulator diameter, <10 μm, is essential to high-speed operation. A bias-light source that increases the total power consumption of the system may offset the advantages of the modulator type.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]
  2. L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
    [CrossRef]
  3. F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,”Appl. Opt. 33, 1601–1618 (1994).
    [CrossRef] [PubMed]
  4. T. Nakahara, S. Matsuo, C. Amano, T. Kurokawa, “Switch-able-logic photonic switch array monolithically integrating MSM’s, FET’s, and MQW modulators,” IEEE Photon. Technol. Lett. 7, 53–55 (1995).
    [CrossRef]
  5. J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
    [CrossRef]
  6. K. Kasahara, “VSTEP-based smart pixels,” IEEE J. Quantum Electron. 29, 757–768 (1993).
    [CrossRef]
  7. S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Photonic switch monolithically integrating an MSM PD, MESFETs, and a vertical-cavity surface-emitting laser,” presented at the LEOS ’94 Annual Meeting, Boston, Mass., 31 October–3 November 1994, paper PD 2.1.
  8. S. Yu, S. R. Forrest, “Implementations of smart pixels for optoelectronic processors and interconnection systems I & II,” J. Lightwave Technol. 11, 1659–1680 (1993).
    [CrossRef]
  9. C. Amano, S. Matsuo, T. Nakahara, T. Kurokawa, “Three-terminal operation analysis of exciton absorption reflection switches (EAR’s),” IEEE J. Quantum Electron. 29, 775–784 (1993).
    [CrossRef]
  10. T. Nakahara, C. Amano, N. Susa, S. Matsuo, T. Kurokawa, “Optimal MQW structure for lowering the switching energy of exciton absorption reflection switch (EARS),” presented at OEC ’92, Makuhari, Chiba, Japan, 15–17 July 1992, paper 17C3-3.
  11. M. Yamaguchi, T. Yamamoto, K. Yukimatsu, S. Matsuo, C. Amano, Y. Nakano, T. Kurokawa, “Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays,” Appl. Opt. 33, 1337–1344 (1994).
    [CrossRef] [PubMed]
  12. R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

1995 (1)

T. Nakahara, S. Matsuo, C. Amano, T. Kurokawa, “Switch-able-logic photonic switch array monolithically integrating MSM’s, FET’s, and MQW modulators,” IEEE Photon. Technol. Lett. 7, 53–55 (1995).
[CrossRef]

1994 (2)

1993 (5)

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
[CrossRef]

K. Kasahara, “VSTEP-based smart pixels,” IEEE J. Quantum Electron. 29, 757–768 (1993).
[CrossRef]

S. Yu, S. R. Forrest, “Implementations of smart pixels for optoelectronic processors and interconnection systems I & II,” J. Lightwave Technol. 11, 1659–1680 (1993).
[CrossRef]

C. Amano, S. Matsuo, T. Nakahara, T. Kurokawa, “Three-terminal operation analysis of exciton absorption reflection switches (EAR’s),” IEEE J. Quantum Electron. 29, 775–784 (1993).
[CrossRef]

1988 (1)

Amano, C.

T. Nakahara, S. Matsuo, C. Amano, T. Kurokawa, “Switch-able-logic photonic switch array monolithically integrating MSM’s, FET’s, and MQW modulators,” IEEE Photon. Technol. Lett. 7, 53–55 (1995).
[CrossRef]

M. Yamaguchi, T. Yamamoto, K. Yukimatsu, S. Matsuo, C. Amano, Y. Nakano, T. Kurokawa, “Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays,” Appl. Opt. 33, 1337–1344 (1994).
[CrossRef] [PubMed]

C. Amano, S. Matsuo, T. Nakahara, T. Kurokawa, “Three-terminal operation analysis of exciton absorption reflection switches (EAR’s),” IEEE J. Quantum Electron. 29, 775–784 (1993).
[CrossRef]

T. Nakahara, C. Amano, N. Susa, S. Matsuo, T. Kurokawa, “Optimal MQW structure for lowering the switching energy of exciton absorption reflection switch (EARS),” presented at OEC ’92, Makuhari, Chiba, Japan, 15–17 July 1992, paper 17C3-3.

Asom, M. T.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Beckman, M. G.

Cheng, J.

J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
[CrossRef]

Chirovsky, L. M. F.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Cloonan, T. J.

Crisci, R. J.

D’Asaro, L. A.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

Esener, S. C.

Feldman, M. R.

Focht, M. W.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Forrest, S. R.

S. Yu, S. R. Forrest, “Implementations of smart pixels for optoelectronic processors and interconnection systems I & II,” J. Lightwave Technol. 11, 1659–1680 (1993).
[CrossRef]

Freund, J. M.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

Fukushima, S.

S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Photonic switch monolithically integrating an MSM PD, MESFETs, and a vertical-cavity surface-emitting laser,” presented at the LEOS ’94 Annual Meeting, Boston, Mass., 31 October–3 November 1994, paper PD 2.1.

Guest, C. C.

Guth, G.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Hersee, S.

J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
[CrossRef]

Hinterlong, S. J.

Hinton, H. S.

Jewell, J. L.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Kasahara, K.

K. Kasahara, “VSTEP-based smart pixels,” IEEE J. Quantum Electron. 29, 757–768 (1993).
[CrossRef]

Kohama, Y.

S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Photonic switch monolithically integrating an MSM PD, MESFETs, and a vertical-cavity surface-emitting laser,” presented at the LEOS ’94 Annual Meeting, Boston, Mass., 31 October–3 November 1994, paper PD 2.1.

Kurokawa, T.

T. Nakahara, S. Matsuo, C. Amano, T. Kurokawa, “Switch-able-logic photonic switch array monolithically integrating MSM’s, FET’s, and MQW modulators,” IEEE Photon. Technol. Lett. 7, 53–55 (1995).
[CrossRef]

M. Yamaguchi, T. Yamamoto, K. Yukimatsu, S. Matsuo, C. Amano, Y. Nakano, T. Kurokawa, “Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays,” Appl. Opt. 33, 1337–1344 (1994).
[CrossRef] [PubMed]

C. Amano, S. Matsuo, T. Nakahara, T. Kurokawa, “Three-terminal operation analysis of exciton absorption reflection switches (EAR’s),” IEEE J. Quantum Electron. 29, 775–784 (1993).
[CrossRef]

S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Photonic switch monolithically integrating an MSM PD, MESFETs, and a vertical-cavity surface-emitting laser,” presented at the LEOS ’94 Annual Meeting, Boston, Mass., 31 October–3 November 1994, paper PD 2.1.

T. Nakahara, C. Amano, N. Susa, S. Matsuo, T. Kurokawa, “Optimal MQW structure for lowering the switching energy of exciton absorption reflection switch (EARS),” presented at OEC ’92, Makuhari, Chiba, Japan, 15–17 July 1992, paper 17C3-3.

Laskowski, E. J.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

Lee, S. H.

Lee, Y. H.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Leibenguth, R. E.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Leibenguth, R. F.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

Lentine, A. L.

F. B. McCormick, T. J. Cloonan, A. L. Lentine, J. M. Sasian, R. L. Morrison, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlong, R. J. Crisci, R. A. Novotny, H. S. Hinton, “Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays,”Appl. Opt. 33, 1601–1618 (1994).
[CrossRef] [PubMed]

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

Matsuo, S.

T. Nakahara, S. Matsuo, C. Amano, T. Kurokawa, “Switch-able-logic photonic switch array monolithically integrating MSM’s, FET’s, and MQW modulators,” IEEE Photon. Technol. Lett. 7, 53–55 (1995).
[CrossRef]

M. Yamaguchi, T. Yamamoto, K. Yukimatsu, S. Matsuo, C. Amano, Y. Nakano, T. Kurokawa, “Experimental investigation of a digital free-space photonic switch that uses exciton absorption reflection switch arrays,” Appl. Opt. 33, 1337–1344 (1994).
[CrossRef] [PubMed]

C. Amano, S. Matsuo, T. Nakahara, T. Kurokawa, “Three-terminal operation analysis of exciton absorption reflection switches (EAR’s),” IEEE J. Quantum Electron. 29, 775–784 (1993).
[CrossRef]

T. Nakahara, C. Amano, N. Susa, S. Matsuo, T. Kurokawa, “Optimal MQW structure for lowering the switching energy of exciton absorption reflection switch (EARS),” presented at OEC ’92, Makuhari, Chiba, Japan, 15–17 July 1992, paper 17C3-3.

S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Photonic switch monolithically integrating an MSM PD, MESFETs, and a vertical-cavity surface-emitting laser,” presented at the LEOS ’94 Annual Meeting, Boston, Mass., 31 October–3 November 1994, paper PD 2.1.

McCormick, F. B.

Morgan, R. A.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Morrison, R. L.

Myers, D. R.

J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
[CrossRef]

Nakahara, T.

T. Nakahara, S. Matsuo, C. Amano, T. Kurokawa, “Switch-able-logic photonic switch array monolithically integrating MSM’s, FET’s, and MQW modulators,” IEEE Photon. Technol. Lett. 7, 53–55 (1995).
[CrossRef]

C. Amano, S. Matsuo, T. Nakahara, T. Kurokawa, “Three-terminal operation analysis of exciton absorption reflection switches (EAR’s),” IEEE J. Quantum Electron. 29, 775–784 (1993).
[CrossRef]

T. Nakahara, C. Amano, N. Susa, S. Matsuo, T. Kurokawa, “Optimal MQW structure for lowering the switching energy of exciton absorption reflection switch (EARS),” presented at OEC ’92, Makuhari, Chiba, Japan, 15–17 July 1992, paper 17C3-3.

S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Photonic switch monolithically integrating an MSM PD, MESFETs, and a vertical-cavity surface-emitting laser,” presented at the LEOS ’94 Annual Meeting, Boston, Mass., 31 October–3 November 1994, paper PD 2.1.

Nakano, Y.

Novotny, R. A.

Ohiso, Y.

S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Photonic switch monolithically integrating an MSM PD, MESFETs, and a vertical-cavity surface-emitting laser,” presented at the LEOS ’94 Annual Meeting, Boston, Mass., 31 October–3 November 1994, paper PD 2.1.

Pei, S. S.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

Robinson, K. C.

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

Sasian, J. M.

Smith, L. E.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

Sun, S. Z.

J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
[CrossRef]

Susa, N.

T. Nakahara, C. Amano, N. Susa, S. Matsuo, T. Kurokawa, “Optimal MQW structure for lowering the switching energy of exciton absorption reflection switch (EARS),” presented at OEC ’92, Makuhari, Chiba, Japan, 15–17 July 1992, paper 17C3-3.

Vawter, G. A.

J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
[CrossRef]

Walker, S. L.

Wojcik, M. J.

Woodward, T. K.

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

Yamaguchi, M.

Yamamoto, T.

Yu, S.

S. Yu, S. R. Forrest, “Implementations of smart pixels for optoelectronic processors and interconnection systems I & II,” J. Lightwave Technol. 11, 1659–1680 (1993).
[CrossRef]

Yukimatsu, K.

Zhou, P.

J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
[CrossRef]

Zolper, J.

J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
[CrossRef]

Appl. Opt. (3)

IEEE J. Quantum Electron. (4)

L. A. D’Asaro, L. M. F. Chirovsky, E. J. Laskowski, S. S. Pei, T. K. Woodward, A. L. Lentine, R. F. Leibenguth, M. W. Focht, J. M. Freund, G. Guth, L. E. Smith, “Batch fabrication and operation of GaAs-AlxGa1–x As field-effect transistor-self-electrooptic effect device (FET-SEED) smart pixel arrays,” IEEE J. Quantum Electron. 29, 670–677 (1993).
[CrossRef]

J. Cheng, P. Zhou, S. Z. Sun, S. Hersee, D. R. Myers, J. Zolper, G. A. Vawter, “surface-emitting laser-based smart pixels for two-dimensional optical logic and reconfigurable optical interconnections,” IEEE J. Quantum Electron. 29, 741–756 (1993).
[CrossRef]

K. Kasahara, “VSTEP-based smart pixels,” IEEE J. Quantum Electron. 29, 757–768 (1993).
[CrossRef]

C. Amano, S. Matsuo, T. Nakahara, T. Kurokawa, “Three-terminal operation analysis of exciton absorption reflection switches (EAR’s),” IEEE J. Quantum Electron. 29, 775–784 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Nakahara, S. Matsuo, C. Amano, T. Kurokawa, “Switch-able-logic photonic switch array monolithically integrating MSM’s, FET’s, and MQW modulators,” IEEE Photon. Technol. Lett. 7, 53–55 (1995).
[CrossRef]

J. Lightwave Technol. (1)

S. Yu, S. R. Forrest, “Implementations of smart pixels for optoelectronic processors and interconnection systems I & II,” J. Lightwave Technol. 11, 1659–1680 (1993).
[CrossRef]

Other (3)

R. A. Morgan, L. M. F. Chirovsky, M. W. Focht, G. Guth, M. T. Asom, R. E. Leibenguth, K. C. Robinson, Y. H. Lee, J. L. Jewell, “Progress in planarized vertical cavity surface emitting laser devices and arrays,” in Devices for Optical Processing, D. M. Gookin, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1562, 149–159 (1991).

T. Nakahara, C. Amano, N. Susa, S. Matsuo, T. Kurokawa, “Optimal MQW structure for lowering the switching energy of exciton absorption reflection switch (EARS),” presented at OEC ’92, Makuhari, Chiba, Japan, 15–17 July 1992, paper 17C3-3.

S. Matsuo, T. Nakahara, Y. Kohama, Y. Ohiso, S. Fukushima, T. Kurokawa, “Photonic switch monolithically integrating an MSM PD, MESFETs, and a vertical-cavity surface-emitting laser,” presented at the LEOS ’94 Annual Meeting, Boston, Mass., 31 October–3 November 1994, paper PD 2.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Electroabsorption of a MQW-pin structure. Experimental results of a change in the absorption coefficient from the state without an electric field to that with an electric field Δα, the residual absorption coefficient at zero field αres, and the operating wavelength λope are shown as a function of the reverse-bias electric field, where λope is set to the red-shifted exciton peak wavelength with the reverse-bias field.

Fig. 2
Fig. 2

Circuit configurations of the smart pixels: (a) the MQW modulator-based and (b) the VCSEL-based smart pixels. Each circuit consists of a phot-detecting part with a MSM PD, a GaAs MESFET multistage E/D DCFL amplifier, and a phototransmit-ting part.

Fig. 3
Fig. 3

Input-output characteristic illustration for an optical digital amplifier. The horizontal and the vertical axes represent input-light power Pin to a smart pixel and output-light power from the pixel Pout multiplied by free-space coupling efficiency η F , i.e., Pin to the next-stage pixel.

Fig. 4
Fig. 4

Noise margin (NML + NMH) ratio to the optical logic swing ΔPin as a function of the DCFL amplifier stage number n for three values of voltage gain of each DCFL inverter GV, where gate-voltage swings Δ Vgs, are assumed to be 0.1 V and 1 V for the first-stage FET and the backward-stage FET’s, respectively.

Fig. 5
Fig. 5

Optimized FET gate width-gate voltage swing product (x) for the circuits with two-stage FET amplifying configurations (n = 2) as a function of ΔPin: (a) the MQW modulator-based and (b) the VCSEL-based smart pixels.

Fig. 6
Fig. 6

Switching-time dependencies on ΔPin. for various n: (a) the MQW modulator-based smart pixels, (b) the VCSEL-based smart pixels with bias current Ibias above the threshold current Ith, and (c) the VCSEL-based smart pixels with Ibias below Ith.

Fig. 7
Fig. 7

Switching-time dependencies on average input-light power Pin(average) for various device parameters: (a), (b), and (c) correspond to Figs. 6(a), 6(b), and 6(c). The parameters are modulator area SMQW and MQW layer thickness tMQW in the modulator case and laser emission efficiency η L and Ith in the VCSEL case.

Fig. 8
Fig. 8

Electric-power-consumption dependencies on ΔPin: (a) the MQW modulator-based and (b) the VCSEL-based smart pixels, where PCin, PCamp, and PCout represent the electric power consumed in the photodetecting part, in the FET amplifying part, and in the phototransmitting part, respectively: PCtotal is the sum of them.

Fig. 9
Fig. 9

Switching-time dependencies on electric-power consumption: (a) the MQW modulator-based and (b) the VCSEL-based smart pixels, where the thick part of each curve is practically realizable with an optical power that the smart pixels can use.

Fig. 10
Fig. 10

Pixel packing density versus bit rate assuming 10 W/cm2 cooling. Dotted curves (a) and (b) are for the MQW modulator-based smart pixels with and without use of the VCSEL arrays as the bias-light sources, respectively, and the solid curve is for the VCSEL-based smart pixels. Device parameters are assumed as follows: SMQW = 100 μm2, tMQW = 1 μm, Ith = 2 mA, Ibias = 2.2 mA, η L = 0.3, and Vth = 1.85 V.

Tables (1)

Tables Icon

Table 1 Parameters Used in the Calculations

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

EX P out ( H ) P out ( L ) = exp ( 2 Δα t MQW ) ,
P LOSS ( MQW ) = 10    log ( η M ) ( dB ) ,
η M P out ( H ) P bias = exp ( 2 α res t MQW ) ,
Δ V MQW F MQW t MQW ,
Δ P out P out ( H ) P out ( L ) = ( 1 1 EX ) η M P bias ,
C MQW = 0 S MQW t MQW ,
P out { 0 ( I VCSEL I th ) η L ω q ( I VCSEL I th ) ( I VCSEL I th ) ,
V VCSEL = V ofs + ( I bias I VCSEL ) R VCSEL ,
EX { 1 ( I bias < I th ) Δ I VCSEL + I bias I th I bias I th ( I bias > I th ) .
Δ P out { η L ω q ( Δ I VCSEL + I bias I th ) ( I bias < I th ) = η L ω q ⋅Δ I VCSEL ( I bias > I th ) .
τ delay = τ n  ln ( Δ I VCSEL Δ I VCSEL + I bias I th ) ( I bias < I th ) ,
G 0 Δ P out Δ P in 1 η F ,
P bias EX EX 1 Δ P in η M η F ,
Δ I VCSEL ≥{ q ω Δ P in η L η F + I th I bias ( I bias < I th ) q ω Δ P in η L η F ( I bias > I th ) .
NML + NMH Δ P in = 1 Δ V gs Δ V gs ( 1 ) 1 G V n ,
P in ( average ) = P th = Δ P in 2 EX + 1 EX 1 .
τ CR τ in + i = 2 n τ amp ( i ) + τ out ,
x ( i ) W g ( i ) ⋅Δ V g ( i ) ( 1 i n ) .
Δ I ds ( i ) = g m x ( i ) ,
Δ Q ( i ) C gs ( i ) Δ V gs ( i ) = C gs * x ( i ) ,
R in = Δ V gs ( 1 ) γ D Δ P i n ,
x out W g ( out ) Δ V gs ( out ) = Δ I VCSEL g m ,
τ in 2.2 ( C D + C gs ( 1 ) ) R in = 2.2 C D R in + A x ( 1 ) ,
τ amp ( i ) Δ Q ( i ) Δ I ds ( i 1 ) 2 = B x ( i ) x ( i 1 ) ( 2 i n ) ,
τ out ( MQW ) C MQW Δ V MQW Δ I ds ( n ) 2 = C 1 1 x ( n ) ,
τ out ( VCSEL ) Δ Q ( out ) Δ I ds ( n ) 2 = C 2 1 x ( n ) ,
A 2.2 C gs * γ D Δ P in = 2.2 C gs * ω q η D 1 Δ P in ,
B 2 C gs * g m ,
C 1 2 C MQW Δ V MQW g m = 2 0 ∊Δ F MQW S MQW g m ,
C 2 2 C gs * Δ I VCSEL g m 2 ,
x ( i ) τ CR = x ( i ) × ( 2.2 C D R in + A x ( 1 ) + B i = 2 n x ( i ) x ( i 1 ) + C 1 x ( n ) ) = 0 ( 1 i n ) ,
x ( i ) opt = A n i + 1 n + 1 B n 2 i + 1 n + 1 C i n + 1 ( 1 i n ) .
τ CR ( min ) = 2.2 C D R in + ( n + 1 ) ( A B n 1 C ) i n + 1 .
PC total = PC in + PC amp + PC out .
PC in γ D P in ( average ) V PD V R ,
PC amp = 1 4 i = 1 n ( I ds ( i ) V dd ( i ) ) + i = 1 n f C L ( i ) Δ V ( i ) V dd ( i ) ( f = 1 / 2 τ ) ,
PC out ( MQW ) 1 2 I MQW ( absorp . ) V MQW ,
PC out ( VCSEL ) = ( I bias + Δ I VCSEL 2 ) V VCSEL .
I MQW ( absorp . ) = γ MQW ( P bias P out ( L ) ) = q η MQW ω EX η M EX 1 Δ P in η M η F ,
x ( i ) opt ( MQW ) = ( q η D 1.1 ω g m ) n i + 1 n + 1 × ( 0 ∊Δ F MQW S MQW C gs * ) i n + 1 × ( Δ P in ) n i + 1 n + 1 ,
x ( i ) opt ( VCSEL ) = q ω g m ( η D 1.1 ) n i + 1 n + 1 ( 1 η L η F ) i n + 1 Δ P in .
x ( out ) = q ω g m η L η F Δ P in .
τ ( MQW ) 2.2 C D R in = ( n + 1 ) ( 2 C gs * g m ) n n + 1 × ( 2.2 ω 0 q Δ F MQW S MQW η D 1 Δ P in ) 1 n + 1 .
τ ( VCSEL ) 2.2 C D R in τ delay = ( n + 1 ) 2 C gs * g m ( 1.1 η D η L η F ) 1 n + 1 .
P in ( average ) = Δ P in 2 + ω q η L η F ( I bias I th ) ( I bias > I th ) .

Metrics