Abstract

A holographic interferometer that uses two-wave mixing in a photorefractive (Bi12SiO20) crystal under an applied ac field is described. The interferometer uses a repetitive sequence of separate record and readout times to obtain quasi real-time holographic interferograms of vibrating objects. It is shown that a good signal-to-noise ratio of the interferometer is obtained by turning off the object illumination and the applied ac field during readout of the hologram. The good signal-to-noise ratio of the resulting holographic interferograms enables phase measurement, which allows for quantitative deformation analysis.

© 1996 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-shifting real-time holographic interferometry that uses bismuth silicon oxide crystals

M. P. Georges and Ph. C. Lemaire
Appl. Opt. 34(32) 7497-7506 (1995)

Recyclable holographic interferometer with a photorefractive crystal: optical scheme optimization

S. V. Miridonov, A. A. Kamshilin, and E. Barbosa
J. Opt. Soc. Am. A 11(6) 1780-1788 (1994)

Holographic interferometry using −1-order diffraction in photorefractive Bi12SiO20 and Bi12TiO20 crystals

S. L. Sochava, R. C. Troth, and S. I. Stepanov
J. Opt. Soc. Am. B 9(8) 1521-1527 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription