Abstract

We present numerical and experimental results of time-resolved emission profiles from various layered turbid media. Numerical solutions determined by time-resolved Monte Carlo simulations are compared with measurements on layered-tissue phantoms made from gelatin. In particular, we show that in certain cases the effects of the upper layers can be eliminated. As a practical example, these results are used to analyze in vivo measurements on the human head. This demonstrates the influence of skin, skull, and meninges on the determination of the blood oxygenation in the brain.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 19, 1264–1267 (1977).
    [Crossref]
  2. B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
    [Crossref] [PubMed]
  3. D. A. Benaron, W. E. Benitz, R. L. Ariagno, D. K. Stevenson, “Noninvasive methods for estimating in vivo oxygenation,” Clin. Pediatr. (Philadelphia) 31, 258–273 (1992).
    [Crossref]
  4. S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
    [Crossref] [PubMed]
  5. M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988).
    [Crossref] [PubMed]
  6. R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, S. Halvin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988).
    [Crossref] [PubMed]
  7. H. Taitelbaum, S. Havlin, G. H. Weiss, “Approximate theory of photon migration in a two-layer medium,” Appl. Opt. 28, 2245–2249 (1989).
    [Crossref] [PubMed]
  8. J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
    [Crossref] [PubMed]
  9. W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. 39, 194–201 (1992).
    [Crossref] [PubMed]
  10. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [Crossref] [PubMed]
  11. A. H. Hielscher, H. Liu, L. H. Wang, F. K. Tittel, B. Chance, S. L. Jacques, “Determination of the blood oxygenation in the brain by time-resolved reflectance spectroscopy (I): Influence of skin, skull and meninges,” in Biochemical Diagnostic Instrumentation A: Optical Diagnosis of Blood and Blood Components, B. Chance, R. R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2136, 4–15 (1994).
  12. S. T. Flock, B. C. Wilson, M. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II: Comparison with measurements on phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
    [Crossref] [PubMed]
  13. A. H. Hielscher, L. H. Wang, F. K. Tittel, S. L. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
    [Crossref] [PubMed]
  14. L. H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multilayered-tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [Crossref] [PubMed]
  15. S. L. Jacques, L. Wang, A. H. Hielscher, “Time-resolved photon propagation in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. van Gemert, eds. (Plenum, New York, 1995), Chap. 9.
  16. L. Wang, S. L. Jacques, “Optimized radial and angular positions in Monte Carlo modeling,” Med. Phys. 21, 1081–1083 (1994).
    [Crossref] [PubMed]
  17. I. Lux, K. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, Boca Raton, Fla., 1991).
  18. D. V. O'Connor, D. Phillips, Time-Correlated Single Photon Counting, (Academic, Orlando, Fla., 1984).
  19. H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
    [Crossref] [PubMed]
  20. F. A. Duck, Physical Properties of Tissue (Academic, San Diego, Calif., 1990), Chap. 3, 43–71.
  21. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
    [Crossref] [PubMed]
  22. H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
    [Crossref] [PubMed]
  23. L. O. Svaasand, R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38, 293–297 (1983).
    [Crossref] [PubMed]

1995 (2)

A. H. Hielscher, L. H. Wang, F. K. Tittel, S. L. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[Crossref] [PubMed]

L. H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multilayered-tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

1994 (1)

L. Wang, S. L. Jacques, “Optimized radial and angular positions in Monte Carlo modeling,” Med. Phys. 21, 1081–1083 (1994).
[Crossref] [PubMed]

1993 (1)

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

1992 (2)

D. A. Benaron, W. E. Benitz, R. L. Ariagno, D. K. Stevenson, “Noninvasive methods for estimating in vivo oxygenation,” Clin. Pediatr. (Philadelphia) 31, 258–273 (1992).
[Crossref]

W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. 39, 194–201 (1992).
[Crossref] [PubMed]

1990 (2)

J. M. Schmitt, G. X. Zhou, E. C. Walker, R. T. Wall, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990).
[Crossref] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

1989 (3)

1988 (3)

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988).
[Crossref] [PubMed]

R. Nossal, J. Kiefer, G. H. Weiss, R. Bonner, H. Taitelbaum, S. Halvin, “Photon migration in layered media,” Appl. Opt. 27, 3382–3391 (1988).
[Crossref] [PubMed]

1987 (1)

H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
[Crossref] [PubMed]

1983 (1)

L. O. Svaasand, R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38, 293–297 (1983).
[Crossref] [PubMed]

1979 (1)

S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[Crossref] [PubMed]

1977 (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 19, 1264–1267 (1977).
[Crossref]

Ariagno, R. L.

D. A. Benaron, W. E. Benitz, R. L. Ariagno, D. K. Stevenson, “Noninvasive methods for estimating in vivo oxygenation,” Clin. Pediatr. (Philadelphia) 31, 258–273 (1992).
[Crossref]

Beauvoit, B.

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

Benaron, D. A.

D. A. Benaron, W. E. Benitz, R. L. Ariagno, D. K. Stevenson, “Noninvasive methods for estimating in vivo oxygenation,” Clin. Pediatr. (Philadelphia) 31, 258–273 (1992).
[Crossref]

Benitz, W. E.

D. A. Benaron, W. E. Benitz, R. L. Ariagno, D. K. Stevenson, “Noninvasive methods for estimating in vivo oxygenation,” Clin. Pediatr. (Philadelphia) 31, 258–273 (1992).
[Crossref]

Blazek, V.

H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
[Crossref] [PubMed]

Bonner, R.

Boretsky, R.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Chance, B.

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

A. H. Hielscher, H. Liu, L. H. Wang, F. K. Tittel, B. Chance, S. L. Jacques, “Determination of the blood oxygenation in the brain by time-resolved reflectance spectroscopy (I): Influence of skin, skull and meninges,” in Biochemical Diagnostic Instrumentation A: Optical Diagnosis of Blood and Blood Components, B. Chance, R. R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2136, 4–15 (1994).

Cohen, P.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Cui, W.

W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. 39, 194–201 (1992).
[Crossref] [PubMed]

Duck, F. A.

F. A. Duck, Physical Properties of Tissue (Academic, San Diego, Calif., 1990), Chap. 3, 43–71.

Eggert, H. R.

H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
[Crossref] [PubMed]

Ellingsen, R.

L. O. Svaasand, R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38, 293–297 (1983).
[Crossref] [PubMed]

Finander, M.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Flock, S. T.

S. T. Flock, B. C. Wilson, M. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II: Comparison with measurements on phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[Crossref] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

Graham, M. D.

S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[Crossref] [PubMed]

Greenfeld, R.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Halvin, S.

Havlin, S.

Hielscher, A. H.

A. H. Hielscher, L. H. Wang, F. K. Tittel, S. L. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[Crossref] [PubMed]

A. H. Hielscher, H. Liu, L. H. Wang, F. K. Tittel, B. Chance, S. L. Jacques, “Determination of the blood oxygenation in the brain by time-resolved reflectance spectroscopy (I): Influence of skin, skull and meninges,” in Biochemical Diagnostic Instrumentation A: Optical Diagnosis of Blood and Blood Components, B. Chance, R. R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2136, 4–15 (1994).

S. L. Jacques, L. Wang, A. H. Hielscher, “Time-resolved photon propagation in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. van Gemert, eds. (Plenum, New York, 1995), Chap. 9.

Jacques, S. L.

L. H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multilayered-tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

A. H. Hielscher, L. H. Wang, F. K. Tittel, S. L. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, “Optimized radial and angular positions in Monte Carlo modeling,” Med. Phys. 21, 1081–1083 (1994).
[Crossref] [PubMed]

S. L. Jacques, L. Wang, A. H. Hielscher, “Time-resolved photon propagation in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. van Gemert, eds. (Plenum, New York, 1995), Chap. 9.

A. H. Hielscher, H. Liu, L. H. Wang, F. K. Tittel, B. Chance, S. L. Jacques, “Determination of the blood oxygenation in the brain by time-resolved reflectance spectroscopy (I): Influence of skin, skull and meninges,” in Biochemical Diagnostic Instrumentation A: Optical Diagnosis of Blood and Blood Components, B. Chance, R. R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2136, 4–15 (1994).

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 19, 1264–1267 (1977).
[Crossref]

Kaufmann, K.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Keijzer, M.

Kiefer, J.

Koblinger, K.

I. Lux, K. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, Boca Raton, Fla., 1991).

Leigh, J. S.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Levy, W.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Liu, H.

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

A. H. Hielscher, H. Liu, L. H. Wang, F. K. Tittel, B. Chance, S. L. Jacques, “Determination of the blood oxygenation in the brain by time-resolved reflectance spectroscopy (I): Influence of skin, skull and meninges,” in Biochemical Diagnostic Instrumentation A: Optical Diagnosis of Blood and Blood Components, B. Chance, R. R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2136, 4–15 (1994).

Lux, I.

I. Lux, K. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, Boca Raton, Fla., 1991).

Miwa, M.

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

Miyaka, H.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Niola, D. S.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Nossal, R.

O'Connor, D. V.

D. V. O'Connor, D. Phillips, Time-Correlated Single Photon Counting, (Academic, Orlando, Fla., 1984).

Ostrander, L. E.

W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. 39, 194–201 (1992).
[Crossref] [PubMed]

Patterson, M.

S. T. Flock, B. C. Wilson, M. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II: Comparison with measurements on phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[Crossref] [PubMed]

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

Phillips, D.

D. V. O'Connor, D. Phillips, Time-Correlated Single Photon Counting, (Academic, Orlando, Fla., 1984).

Schmitt, J. M.

Smith, D. S.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Star, W. M.

Stevenson, D. K.

D. A. Benaron, W. E. Benitz, R. L. Ariagno, D. K. Stevenson, “Noninvasive methods for estimating in vivo oxygenation,” Clin. Pediatr. (Philadelphia) 31, 258–273 (1992).
[Crossref]

Storchi, P. R. M.

Svaasand, L. O.

L. O. Svaasand, R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38, 293–297 (1983).
[Crossref] [PubMed]

Taitelbaum, H.

Takatani, S.

S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[Crossref] [PubMed]

Tittel, F. K.

A. H. Hielscher, L. H. Wang, F. K. Tittel, S. L. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[Crossref] [PubMed]

A. H. Hielscher, H. Liu, L. H. Wang, F. K. Tittel, B. Chance, S. L. Jacques, “Determination of the blood oxygenation in the brain by time-resolved reflectance spectroscopy (I): Influence of skin, skull and meninges,” in Biochemical Diagnostic Instrumentation A: Optical Diagnosis of Blood and Blood Components, B. Chance, R. R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2136, 4–15 (1994).

Walker, E. C.

Wall, R. T.

Wang, L.

L. Wang, S. L. Jacques, “Optimized radial and angular positions in Monte Carlo modeling,” Med. Phys. 21, 1081–1083 (1994).
[Crossref] [PubMed]

S. L. Jacques, L. Wang, A. H. Hielscher, “Time-resolved photon propagation in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. van Gemert, eds. (Plenum, New York, 1995), Chap. 9.

Wang, L. H.

L. H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multilayered-tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

A. H. Hielscher, L. H. Wang, F. K. Tittel, S. L. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[Crossref] [PubMed]

A. H. Hielscher, H. Liu, L. H. Wang, F. K. Tittel, B. Chance, S. L. Jacques, “Determination of the blood oxygenation in the brain by time-resolved reflectance spectroscopy (I): Influence of skin, skull and meninges,” in Biochemical Diagnostic Instrumentation A: Optical Diagnosis of Blood and Blood Components, B. Chance, R. R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2136, 4–15 (1994).

Wang, N. G.

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

Weiss, G. H.

Wilson, B. C.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[Crossref] [PubMed]

S. T. Flock, B. C. Wilson, M. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II: Comparison with measurements on phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[Crossref] [PubMed]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

Yoshioka, P.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Young, M.

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Zheng, L.

L. H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multilayered-tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

Zhou, G. X.

Anal. Biochem. (1)

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[Crossref] [PubMed]

Appl. Opt. (4)

Clin. Pediatr. (Philadelphia) (1)

D. A. Benaron, W. E. Benitz, R. L. Ariagno, D. K. Stevenson, “Noninvasive methods for estimating in vivo oxygenation,” Clin. Pediatr. (Philadelphia) 31, 258–273 (1992).
[Crossref]

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multilayered-tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (3)

S. T. Flock, B. C. Wilson, M. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues—II: Comparison with measurements on phantoms,” IEEE Trans. Biomed. Eng. 36, 1169–1173 (1989).
[Crossref] [PubMed]

S. Takatani, M. D. Graham, “Theoretical analysis of diffuse reflectance from a two-layer tissue model,” IEEE Trans. Biomed. Eng. 26, 656–664 (1979).
[Crossref] [PubMed]

W. Cui, L. E. Ostrander, “The relationship of surface reflectance measurements to optical properties of layered biological media,” IEEE Trans. Biomed. Eng. 39, 194–201 (1992).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

L. Wang, S. L. Jacques, “Optimized radial and angular positions in Monte Carlo modeling,” Med. Phys. 21, 1081–1083 (1994).
[Crossref] [PubMed]

Neurosurgery (1)

H. R. Eggert, V. Blazek, “Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm,” Neurosurgery 21, 459–464 (1987).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

L. O. Svaasand, R. Ellingsen, “Optical properties of human brain,” Photochem. Photobiol. 38, 293–297 (1983).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).
[Crossref] [PubMed]

A. H. Hielscher, L. H. Wang, F. K. Tittel, S. L. Jacques, “Influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Chance, J. S. Leigh, H. Miyaka, D. S. Smith, D. S. Niola, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, P. Yoshioka, R. Boretsky, “Comparison of time resolved and unresolved measurements of deoxyhemoglobin in brain,” Proc. Natl. Acad. Sci. U.S.A. 85, 4971–4975 (1988).
[Crossref] [PubMed]

Science (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 19, 1264–1267 (1977).
[Crossref]

Other (5)

A. H. Hielscher, H. Liu, L. H. Wang, F. K. Tittel, B. Chance, S. L. Jacques, “Determination of the blood oxygenation in the brain by time-resolved reflectance spectroscopy (I): Influence of skin, skull and meninges,” in Biochemical Diagnostic Instrumentation A: Optical Diagnosis of Blood and Blood Components, B. Chance, R. R. Alfano, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2136, 4–15 (1994).

I. Lux, K. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC, Boca Raton, Fla., 1991).

D. V. O'Connor, D. Phillips, Time-Correlated Single Photon Counting, (Academic, Orlando, Fla., 1984).

S. L. Jacques, L. Wang, A. H. Hielscher, “Time-resolved photon propagation in tissues,” in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. van Gemert, eds. (Plenum, New York, 1995), Chap. 9.

F. A. Duck, Physical Properties of Tissue (Academic, San Diego, Calif., 1990), Chap. 3, 43–71.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Monte Carlo simulations for a two-layer system [(III)]. Both layers have the same μ s= 5 cm−1. The upper layer is 8 mm thick. The source–detector separation is 1 cm. The related homogeneous media are shown as reference [(I) and (II)].

Fig. 2
Fig. 2

Experiments on layered gel phantoms with a layer of high-absorbing gel on top of a low-absorbing gel. The values labeled along the dashed curves indicate the thicknesses of the top layer. The open circles indicate results from a Monte Carlo simulation for the layered system. The scattering coefficient μ s is 10.0 cm−1 for all media.

Fig. 3
Fig. 3

Monte Carlo simulations for two-layer systems [(III)]. (a) Both layers have the same μ s = 5 cm−1. The upper layer is 4 mm thick. The source–detector separation is 1 cm. (b) All parameters are as in (a), except the absorption coefficient of the lower layer has been increased tenfold. The related homogeneous media are shown as reference [(I) and (II)].

Fig. 4
Fig. 4

Experiments on layered gel phantoms with a layer of low-absorbing gel on top of an ∼22-fold more strongly absorbing gel. The values labeled along the dashed curves indicate the thicknesses of the top layer. The scattering coefficient μ s is 12.0 cm−1 for all media.

Fig. 5
Fig. 5

Apparent absorption coefficient as a function of the absorption coefficient of the underlying medium and the layer thickness (experimental results). The low-absorbing top layer has an absorption coefficient of μ a = 0.042 cm−1. The scattering coefficient is constant throughout the phantom (μ s = 10.5 cm−1). The separation between the detector and the source is 2 cm.

Fig. 6
Fig. 6

Monte Carlo simulation of a two-layer system with tissues with different absorption and scattering coefficients.

Fig. 7
Fig. 7

Experimental results from a three-layer system in which a high-absorbing layer (μ a = 0.2 cm−1) is sandwiched between a low-absorbing 6-mm-thick surface layer and a low-absorbing underlying medium (μ a = 0.02 cm−1). The reduced scattering coefficient is kept constant at 9.5 cm−1.

Fig. 8
Fig. 8

Experimental results from a three-layer system, in which a low-absorbing layer (μ a = 0.02 cm−1) is sandwiched between a high-absorbing 6-mm-thick surface layer and a high-absorbing underlying medium (μ a = 0.2 cm−1). The reduced scattering coefficient is kept constant at 9.5 cm−1.

Fig. 9
Fig. 9

Monte Carlo simulation of a multilayer system with tissues with different scattering and absorption coefficients. The top layer has coefficients μ a = 0.2 cm−1 and μ s = 8 cm−1, and the intermediate layer has μ a = 0.05 cm−1 and μ s = 24 cm−1, and the bottom medium has μ a = 0.15 cm−1 and μ b = 10 cm−1.

Fig. 10
Fig. 10

Time-resolved reflectance measurements on systems containing an almost absorption- and scattering-free layer of thickness d. The refractive index n = 1.37 is the same throughout all layers.

Fig. 11
Fig. 11

Comparrision of Monte Carlo simulations of two systems. In one case (solid curve) the refractive index, n = 1.37, of the clear layer is the same as the one of the background medium. In the other case (dotted curve) the refractive index of the clear layer is n = 1.30.

Fig. 12
Fig. 12

In vivo measurement of the forehead. The source–detector separation was 1.9 cm. A wavelength of λ = 830 nm was used. Based on the results in Fig. 5, it can be concluded that the apparent μ a determined by a diffusion-theory fit equals the μ a of the underlying brain tissue.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R ( r , t ) = ( 4 π cD ) 3 / 2 ( μ a + μ s ) 1 t 5 / 2 × exp [ r 2 + ( μ a + μ s ) 2 4 cD 1 t ] exp ( μ a ct ) ,
ln [ R ( r , t ) ] = κ 5 2 ln ( t ) ( ct + a t ) μ a ( a t ) μ s ,

Metrics