Abstract

The design of a laser microrefractometer that is suitable for temperature-dependent measurements is described. The refractive index of methylene iodide is measured in the temperature range of 22–92 °C for laser wavelengths covering almost the entire visible range of the spectrum: 442, 488, 515, 543, 594, and 633 nm. A detailed analysis of the temperature-related experimental error is made.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bauer, K. Fajans, S. Levin, “Refractometry,” in Physical Methods in Organic ChemistryA. Weissberger, ed., 3rd ed. (Intersciences, New York, 1960), pp. 1139–1281.
  2. B. V. Ioffe, Refractometric Methods in Chemistry (Chemistry, Leningrad, 1983).
  3. E. P. Black, W. T. Harvey, S. W. Ferris, “High-temperature refractometry with an Abbè-type instrument,” Ann. Chem. 26, 1089–1092 (1954).
    [CrossRef]
  4. U. Tietze, C. Schenk, Halbleiter-Schaltungstechnik (Springer-Verlag, Heidelberg, 1985), pp. 803–817.
  5. A. C. DeFranzo, B. G. Pazol, C. E. Wheeler, K. A. McCarthy, “Index of refraction measurement at low temperatures,” Rev. Sci. Instrum. 62, 1214–1218 (1991).
    [CrossRef]
  6. S. Sainov, N. Dushkina, “Simple laser microrefractometer,” Appl. Opt. 29, 1406–1408 (1990).
    [CrossRef]
  7. S. Sainov, “Laser microrefractometer,” Rev. Sci. Instrum. 62, 3106–3107 (1991).
    [CrossRef]
  8. Schott Optical Glass, Mainz, Germany D-55112, 1992.
  9. R. E. Anderson, A. J. Lightman, “Measurements of the refractive-index variations with temperature of a photomonomer,” Appl. Opt. 30, 3792–3793 (1991).
    [CrossRef] [PubMed]
  10. E. Wahlstrom, Optical Crystallography (Wiley, New York, 1975), Chap. 6, p. 117.
  11. T.-M. Lee, S. Mittler-Neher, D. Neher, G. I. Stegeman, C. Roux, M. Leclerc, “Side chain dilution effects on the optical properties of poly[3-alkylthiophen]s,” Opt. Mater. 1, 65–70 (1992).
    [CrossRef]

1992

T.-M. Lee, S. Mittler-Neher, D. Neher, G. I. Stegeman, C. Roux, M. Leclerc, “Side chain dilution effects on the optical properties of poly[3-alkylthiophen]s,” Opt. Mater. 1, 65–70 (1992).
[CrossRef]

1991

A. C. DeFranzo, B. G. Pazol, C. E. Wheeler, K. A. McCarthy, “Index of refraction measurement at low temperatures,” Rev. Sci. Instrum. 62, 1214–1218 (1991).
[CrossRef]

S. Sainov, “Laser microrefractometer,” Rev. Sci. Instrum. 62, 3106–3107 (1991).
[CrossRef]

R. E. Anderson, A. J. Lightman, “Measurements of the refractive-index variations with temperature of a photomonomer,” Appl. Opt. 30, 3792–3793 (1991).
[CrossRef] [PubMed]

1990

1954

E. P. Black, W. T. Harvey, S. W. Ferris, “High-temperature refractometry with an Abbè-type instrument,” Ann. Chem. 26, 1089–1092 (1954).
[CrossRef]

Anderson, R. E.

Bauer, N.

N. Bauer, K. Fajans, S. Levin, “Refractometry,” in Physical Methods in Organic ChemistryA. Weissberger, ed., 3rd ed. (Intersciences, New York, 1960), pp. 1139–1281.

Black, E. P.

E. P. Black, W. T. Harvey, S. W. Ferris, “High-temperature refractometry with an Abbè-type instrument,” Ann. Chem. 26, 1089–1092 (1954).
[CrossRef]

DeFranzo, A. C.

A. C. DeFranzo, B. G. Pazol, C. E. Wheeler, K. A. McCarthy, “Index of refraction measurement at low temperatures,” Rev. Sci. Instrum. 62, 1214–1218 (1991).
[CrossRef]

Dushkina, N.

Fajans, K.

N. Bauer, K. Fajans, S. Levin, “Refractometry,” in Physical Methods in Organic ChemistryA. Weissberger, ed., 3rd ed. (Intersciences, New York, 1960), pp. 1139–1281.

Ferris, S. W.

E. P. Black, W. T. Harvey, S. W. Ferris, “High-temperature refractometry with an Abbè-type instrument,” Ann. Chem. 26, 1089–1092 (1954).
[CrossRef]

Harvey, W. T.

E. P. Black, W. T. Harvey, S. W. Ferris, “High-temperature refractometry with an Abbè-type instrument,” Ann. Chem. 26, 1089–1092 (1954).
[CrossRef]

Ioffe, B. V.

B. V. Ioffe, Refractometric Methods in Chemistry (Chemistry, Leningrad, 1983).

Leclerc, M.

T.-M. Lee, S. Mittler-Neher, D. Neher, G. I. Stegeman, C. Roux, M. Leclerc, “Side chain dilution effects on the optical properties of poly[3-alkylthiophen]s,” Opt. Mater. 1, 65–70 (1992).
[CrossRef]

Lee, T.-M.

T.-M. Lee, S. Mittler-Neher, D. Neher, G. I. Stegeman, C. Roux, M. Leclerc, “Side chain dilution effects on the optical properties of poly[3-alkylthiophen]s,” Opt. Mater. 1, 65–70 (1992).
[CrossRef]

Levin, S.

N. Bauer, K. Fajans, S. Levin, “Refractometry,” in Physical Methods in Organic ChemistryA. Weissberger, ed., 3rd ed. (Intersciences, New York, 1960), pp. 1139–1281.

Lightman, A. J.

McCarthy, K. A.

A. C. DeFranzo, B. G. Pazol, C. E. Wheeler, K. A. McCarthy, “Index of refraction measurement at low temperatures,” Rev. Sci. Instrum. 62, 1214–1218 (1991).
[CrossRef]

Mittler-Neher, S.

T.-M. Lee, S. Mittler-Neher, D. Neher, G. I. Stegeman, C. Roux, M. Leclerc, “Side chain dilution effects on the optical properties of poly[3-alkylthiophen]s,” Opt. Mater. 1, 65–70 (1992).
[CrossRef]

Neher, D.

T.-M. Lee, S. Mittler-Neher, D. Neher, G. I. Stegeman, C. Roux, M. Leclerc, “Side chain dilution effects on the optical properties of poly[3-alkylthiophen]s,” Opt. Mater. 1, 65–70 (1992).
[CrossRef]

Pazol, B. G.

A. C. DeFranzo, B. G. Pazol, C. E. Wheeler, K. A. McCarthy, “Index of refraction measurement at low temperatures,” Rev. Sci. Instrum. 62, 1214–1218 (1991).
[CrossRef]

Roux, C.

T.-M. Lee, S. Mittler-Neher, D. Neher, G. I. Stegeman, C. Roux, M. Leclerc, “Side chain dilution effects on the optical properties of poly[3-alkylthiophen]s,” Opt. Mater. 1, 65–70 (1992).
[CrossRef]

Sainov, S.

S. Sainov, “Laser microrefractometer,” Rev. Sci. Instrum. 62, 3106–3107 (1991).
[CrossRef]

S. Sainov, N. Dushkina, “Simple laser microrefractometer,” Appl. Opt. 29, 1406–1408 (1990).
[CrossRef]

Schenk, C.

U. Tietze, C. Schenk, Halbleiter-Schaltungstechnik (Springer-Verlag, Heidelberg, 1985), pp. 803–817.

Stegeman, G. I.

T.-M. Lee, S. Mittler-Neher, D. Neher, G. I. Stegeman, C. Roux, M. Leclerc, “Side chain dilution effects on the optical properties of poly[3-alkylthiophen]s,” Opt. Mater. 1, 65–70 (1992).
[CrossRef]

Tietze, U.

U. Tietze, C. Schenk, Halbleiter-Schaltungstechnik (Springer-Verlag, Heidelberg, 1985), pp. 803–817.

Wahlstrom, E.

E. Wahlstrom, Optical Crystallography (Wiley, New York, 1975), Chap. 6, p. 117.

Wheeler, C. E.

A. C. DeFranzo, B. G. Pazol, C. E. Wheeler, K. A. McCarthy, “Index of refraction measurement at low temperatures,” Rev. Sci. Instrum. 62, 1214–1218 (1991).
[CrossRef]

Ann. Chem.

E. P. Black, W. T. Harvey, S. W. Ferris, “High-temperature refractometry with an Abbè-type instrument,” Ann. Chem. 26, 1089–1092 (1954).
[CrossRef]

Appl. Opt.

Opt. Mater.

T.-M. Lee, S. Mittler-Neher, D. Neher, G. I. Stegeman, C. Roux, M. Leclerc, “Side chain dilution effects on the optical properties of poly[3-alkylthiophen]s,” Opt. Mater. 1, 65–70 (1992).
[CrossRef]

Rev. Sci. Instrum.

A. C. DeFranzo, B. G. Pazol, C. E. Wheeler, K. A. McCarthy, “Index of refraction measurement at low temperatures,” Rev. Sci. Instrum. 62, 1214–1218 (1991).
[CrossRef]

S. Sainov, “Laser microrefractometer,” Rev. Sci. Instrum. 62, 3106–3107 (1991).
[CrossRef]

Other

Schott Optical Glass, Mainz, Germany D-55112, 1992.

E. Wahlstrom, Optical Crystallography (Wiley, New York, 1975), Chap. 6, p. 117.

U. Tietze, C. Schenk, Halbleiter-Schaltungstechnik (Springer-Verlag, Heidelberg, 1985), pp. 803–817.

N. Bauer, K. Fajans, S. Levin, “Refractometry,” in Physical Methods in Organic ChemistryA. Weissberger, ed., 3rd ed. (Intersciences, New York, 1960), pp. 1139–1281.

B. V. Ioffe, Refractometric Methods in Chemistry (Chemistry, Leningrad, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic diagram of the high-temperature laser microrefractometer: 1, proportional integral differential regulated heating stage; 2, metal diffraction grating; 3, heavy glass prism; 4, input laser beam; 5, diffracted beams; 6, isolating glass plates; 7, goniometer; PT-100, thermometers.

Fig. 2
Fig. 2

Refractive index of CH2I2 as a function of temperature and laser wavelength. The lines repesent linear regressions.

Tables (1)

Tables Icon

Table 1 Refractive Index n(λ, T) of CH2I2 for Select Laser Wavelengths

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n = N sin ( α prism + arcsin sin φ 0 c N ) .
Δ n = [ ( Δ n N ) 2 + ( Δ n φ 0 c ) 2 + ( Δ n T ) 2 ] 1 / 2 ,
Δ n N = Δ N { sin [ α prism + arcsin ( sin φ 0 c N ) ] sin φ 0 c cos ( α prism + arcsin sin φ 0 c N ) N ( 1 sin 2 φ 0 c N 2 ) 1 / 2 } ,
Δ n φ 0 c = cos ( α prism + arcsin sin φ 0 c N ) × cos φ 0 c ( 1 sin 2 φ 0 c N 2 ) 1 / 2 Δ φ 0 c ,
Δ n T = Δ T N T [ sin ( α prism + arcsin sin φ 0 c N ) cos ( α prism + arcsin sin φ 0 c N ) × sin φ 0 c ( N 2 sin 2 φ 0 c ) 1 / 2 ] .
Δ n T = 0.79 Δ T ( N T ) λ = 442 nm .
Δ n = [ ( 0.0004 ) 2 + ( 0.0003 ) 2 + ( 0.0006 ) 2 ] 1 / 2 = 7.5 × 10 4 .

Metrics