Abstract

In January 1992 the Space Shuttle Discovery carried the first International Microgravity Laboratory into Earth orbit for eight days. One of the many experiments carried out during the orbit was a combined study of triglycine sulfate crystal growth from solution and fluid–particle-dynamics studies in microgravity. Optical diagnostics included holocameras to provide concentration measurements and three-dimensional particle tracking. More than 1000 holograms that were recorded in space have been analyzed since the flight, providing a wide range of interesting conclusions about microgravity, crystal growth, and particle dynamics. This paper focuses on the results of holographic particle-image velocimetry experiments and provides an excellent example, along with new techniques, for exploiting holography for particle and flow diagnostics.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Lal, J. D. Trolinger, W. R. Wilcox, R. L. Kroes, “Holographic flow field analysis in Spacelab-3 crystal growth experiment,” in Flow Visualization and Aero-Optics in Simulated Environments, H. T. Bentley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.788, 62–74 (1987).
  2. J. D. Trolinger, W. M. Farmer, R. A. Beltz, “Multiple exposure holography of time varying, three-dimensional fields,” Appl. Opt. 7, 1640–1641 (1968).
    [CrossRef] [PubMed]
  3. J. D. Trolinger, R. B. Lal, A. K. Batra, D. McIntosh, “Particle image velocimetry experiments for the IML-1 spaceflight,” in Crystal Growth in Space and Related Optical Diagnostics, R. B. Lal, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1557, 80–95 (1991).
  4. S. B. Gurevich, V. B. Konstantinov, D. P. Chernikh, “Interference and holography studies in space,” in Holography '89, Proc. Soc. Photo-Opt. Instrum. Eng. 1183, 479–485 (1989).
  5. R. B. Lal, A. K. Batra, J. D. Trolinger, W. R. Wilcox, B. Steiner, “Growth and characteristics of TGS crystals grown aboard first international microgravity laboratory (IML-1),” Ferroelectrics 1, 158–181 (1994).
  6. C. S. Vikram, Particle Field Holography (Cambridge U. Press, Cambridge, U.K., 1992).
    [CrossRef]
  7. G. Wang, Z. Hao, “Image processing of a particle field hologram,” in Practical Holography IX, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2406, 369–373 (1995).
  8. J. D. Trolinger, R. B. Lal, A. K. Batra, “Holographic instrumentation for monitoring crystal growth in space,” Opt. Eng. 30, 1608–1614 (1991).
    [CrossRef]
  9. H. Yoo, W. R. Wilcox, R. B. Lal, R. Trolinger, J. D. Trolinger, “Modeling the growth of triglycine sulfate crystals in Spacelab-3,” J. Cryst. Growth 92, 101–117 (1988).
    [CrossRef]
  10. L. L. Regel, A. A. Vedernikov, R. V. Ilinski, M. Melikhov, “Analysis of inertial random walk of particles in liquids under microgravity conditions,” in Proceedings of the Sixth European Symposium on Material Science Under Microgravity Conditions, European Space Agency, SP-256 Paris1987), pp. 593–597.
  11. M. R. Maxey, J. J. Riley, “Equations of motion for a small rigid sphere in a non-uniform flow,” Phys. Fluids 26, 883–895 (1983).
    [CrossRef]
  12. J. D. Trolinger, R. H. Rangel, R. B. Lal, “Methodologies for the micro-mechanics of microspheres in a fluid in microgravity,” in Proceedings of the International Invitational UACEM Symposium, Vol. 11 in the series, R. J. Pryputniewicz, ed. (Worcester Polytechnic Institute, Worcester, Mass., 1993), Chap. 37, pp. 517–534.
  13. R. J. Adrian, “Scattering particle characteristics and their effect on pulsed laser measurement of fluid flow: speckle velocimetry versus particle image velocimetry,” Appl. Opt. 23, 1690–1702 (1984).
    [CrossRef] [PubMed]
  14. D. D. Liu, F. Hussain, “Off-axis holographic technique for particle image velocimetry using a Fourier-transform lens,” Opt. Lett. 20, 327–329 (1995).
    [CrossRef] [PubMed]
  15. H. Meng, F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
    [CrossRef] [PubMed]
  16. H. Meng, F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7, 9–11 (1995).
    [CrossRef]
  17. W K. Witherow, “Measuring residual accelerations in the spacelab environment,” in Crystal Growth in Space and Related Optical Diagnostics, R. B. Lal, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1557, 56–67 (1991).
  18. imagelab computer software, Warner Frei Associates, Santa Monica, Calif., Nov., 1992.

1995 (3)

1994 (1)

R. B. Lal, A. K. Batra, J. D. Trolinger, W. R. Wilcox, B. Steiner, “Growth and characteristics of TGS crystals grown aboard first international microgravity laboratory (IML-1),” Ferroelectrics 1, 158–181 (1994).

1991 (1)

J. D. Trolinger, R. B. Lal, A. K. Batra, “Holographic instrumentation for monitoring crystal growth in space,” Opt. Eng. 30, 1608–1614 (1991).
[CrossRef]

1989 (1)

S. B. Gurevich, V. B. Konstantinov, D. P. Chernikh, “Interference and holography studies in space,” in Holography '89, Proc. Soc. Photo-Opt. Instrum. Eng. 1183, 479–485 (1989).

1988 (1)

H. Yoo, W. R. Wilcox, R. B. Lal, R. Trolinger, J. D. Trolinger, “Modeling the growth of triglycine sulfate crystals in Spacelab-3,” J. Cryst. Growth 92, 101–117 (1988).
[CrossRef]

1984 (1)

1983 (1)

M. R. Maxey, J. J. Riley, “Equations of motion for a small rigid sphere in a non-uniform flow,” Phys. Fluids 26, 883–895 (1983).
[CrossRef]

1968 (1)

Adrian, R. J.

Batra, A. K.

R. B. Lal, A. K. Batra, J. D. Trolinger, W. R. Wilcox, B. Steiner, “Growth and characteristics of TGS crystals grown aboard first international microgravity laboratory (IML-1),” Ferroelectrics 1, 158–181 (1994).

J. D. Trolinger, R. B. Lal, A. K. Batra, “Holographic instrumentation for monitoring crystal growth in space,” Opt. Eng. 30, 1608–1614 (1991).
[CrossRef]

J. D. Trolinger, R. B. Lal, A. K. Batra, D. McIntosh, “Particle image velocimetry experiments for the IML-1 spaceflight,” in Crystal Growth in Space and Related Optical Diagnostics, R. B. Lal, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1557, 80–95 (1991).

Beltz, R. A.

Chernikh, D. P.

S. B. Gurevich, V. B. Konstantinov, D. P. Chernikh, “Interference and holography studies in space,” in Holography '89, Proc. Soc. Photo-Opt. Instrum. Eng. 1183, 479–485 (1989).

Farmer, W. M.

Gurevich, S. B.

S. B. Gurevich, V. B. Konstantinov, D. P. Chernikh, “Interference and holography studies in space,” in Holography '89, Proc. Soc. Photo-Opt. Instrum. Eng. 1183, 479–485 (1989).

Hao, Z.

G. Wang, Z. Hao, “Image processing of a particle field hologram,” in Practical Holography IX, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2406, 369–373 (1995).

Hussain, F.

Ilinski, R. V.

L. L. Regel, A. A. Vedernikov, R. V. Ilinski, M. Melikhov, “Analysis of inertial random walk of particles in liquids under microgravity conditions,” in Proceedings of the Sixth European Symposium on Material Science Under Microgravity Conditions, European Space Agency, SP-256 Paris1987), pp. 593–597.

Konstantinov, V. B.

S. B. Gurevich, V. B. Konstantinov, D. P. Chernikh, “Interference and holography studies in space,” in Holography '89, Proc. Soc. Photo-Opt. Instrum. Eng. 1183, 479–485 (1989).

Kroes, R. L.

R. B. Lal, J. D. Trolinger, W. R. Wilcox, R. L. Kroes, “Holographic flow field analysis in Spacelab-3 crystal growth experiment,” in Flow Visualization and Aero-Optics in Simulated Environments, H. T. Bentley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.788, 62–74 (1987).

Lal, R. B.

R. B. Lal, A. K. Batra, J. D. Trolinger, W. R. Wilcox, B. Steiner, “Growth and characteristics of TGS crystals grown aboard first international microgravity laboratory (IML-1),” Ferroelectrics 1, 158–181 (1994).

J. D. Trolinger, R. B. Lal, A. K. Batra, “Holographic instrumentation for monitoring crystal growth in space,” Opt. Eng. 30, 1608–1614 (1991).
[CrossRef]

H. Yoo, W. R. Wilcox, R. B. Lal, R. Trolinger, J. D. Trolinger, “Modeling the growth of triglycine sulfate crystals in Spacelab-3,” J. Cryst. Growth 92, 101–117 (1988).
[CrossRef]

R. B. Lal, J. D. Trolinger, W. R. Wilcox, R. L. Kroes, “Holographic flow field analysis in Spacelab-3 crystal growth experiment,” in Flow Visualization and Aero-Optics in Simulated Environments, H. T. Bentley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.788, 62–74 (1987).

J. D. Trolinger, R. B. Lal, A. K. Batra, D. McIntosh, “Particle image velocimetry experiments for the IML-1 spaceflight,” in Crystal Growth in Space and Related Optical Diagnostics, R. B. Lal, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1557, 80–95 (1991).

J. D. Trolinger, R. H. Rangel, R. B. Lal, “Methodologies for the micro-mechanics of microspheres in a fluid in microgravity,” in Proceedings of the International Invitational UACEM Symposium, Vol. 11 in the series, R. J. Pryputniewicz, ed. (Worcester Polytechnic Institute, Worcester, Mass., 1993), Chap. 37, pp. 517–534.

Liu, D. D.

Maxey, M. R.

M. R. Maxey, J. J. Riley, “Equations of motion for a small rigid sphere in a non-uniform flow,” Phys. Fluids 26, 883–895 (1983).
[CrossRef]

McIntosh, D.

J. D. Trolinger, R. B. Lal, A. K. Batra, D. McIntosh, “Particle image velocimetry experiments for the IML-1 spaceflight,” in Crystal Growth in Space and Related Optical Diagnostics, R. B. Lal, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1557, 80–95 (1991).

Melikhov, M.

L. L. Regel, A. A. Vedernikov, R. V. Ilinski, M. Melikhov, “Analysis of inertial random walk of particles in liquids under microgravity conditions,” in Proceedings of the Sixth European Symposium on Material Science Under Microgravity Conditions, European Space Agency, SP-256 Paris1987), pp. 593–597.

Meng, H.

H. Meng, F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7, 9–11 (1995).
[CrossRef]

H. Meng, F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef] [PubMed]

Rangel, R. H.

J. D. Trolinger, R. H. Rangel, R. B. Lal, “Methodologies for the micro-mechanics of microspheres in a fluid in microgravity,” in Proceedings of the International Invitational UACEM Symposium, Vol. 11 in the series, R. J. Pryputniewicz, ed. (Worcester Polytechnic Institute, Worcester, Mass., 1993), Chap. 37, pp. 517–534.

Regel, L. L.

L. L. Regel, A. A. Vedernikov, R. V. Ilinski, M. Melikhov, “Analysis of inertial random walk of particles in liquids under microgravity conditions,” in Proceedings of the Sixth European Symposium on Material Science Under Microgravity Conditions, European Space Agency, SP-256 Paris1987), pp. 593–597.

Riley, J. J.

M. R. Maxey, J. J. Riley, “Equations of motion for a small rigid sphere in a non-uniform flow,” Phys. Fluids 26, 883–895 (1983).
[CrossRef]

Steiner, B.

R. B. Lal, A. K. Batra, J. D. Trolinger, W. R. Wilcox, B. Steiner, “Growth and characteristics of TGS crystals grown aboard first international microgravity laboratory (IML-1),” Ferroelectrics 1, 158–181 (1994).

Trolinger, J. D.

R. B. Lal, A. K. Batra, J. D. Trolinger, W. R. Wilcox, B. Steiner, “Growth and characteristics of TGS crystals grown aboard first international microgravity laboratory (IML-1),” Ferroelectrics 1, 158–181 (1994).

J. D. Trolinger, R. B. Lal, A. K. Batra, “Holographic instrumentation for monitoring crystal growth in space,” Opt. Eng. 30, 1608–1614 (1991).
[CrossRef]

H. Yoo, W. R. Wilcox, R. B. Lal, R. Trolinger, J. D. Trolinger, “Modeling the growth of triglycine sulfate crystals in Spacelab-3,” J. Cryst. Growth 92, 101–117 (1988).
[CrossRef]

J. D. Trolinger, W. M. Farmer, R. A. Beltz, “Multiple exposure holography of time varying, three-dimensional fields,” Appl. Opt. 7, 1640–1641 (1968).
[CrossRef] [PubMed]

R. B. Lal, J. D. Trolinger, W. R. Wilcox, R. L. Kroes, “Holographic flow field analysis in Spacelab-3 crystal growth experiment,” in Flow Visualization and Aero-Optics in Simulated Environments, H. T. Bentley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.788, 62–74 (1987).

J. D. Trolinger, R. B. Lal, A. K. Batra, D. McIntosh, “Particle image velocimetry experiments for the IML-1 spaceflight,” in Crystal Growth in Space and Related Optical Diagnostics, R. B. Lal, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1557, 80–95 (1991).

J. D. Trolinger, R. H. Rangel, R. B. Lal, “Methodologies for the micro-mechanics of microspheres in a fluid in microgravity,” in Proceedings of the International Invitational UACEM Symposium, Vol. 11 in the series, R. J. Pryputniewicz, ed. (Worcester Polytechnic Institute, Worcester, Mass., 1993), Chap. 37, pp. 517–534.

Trolinger, R.

H. Yoo, W. R. Wilcox, R. B. Lal, R. Trolinger, J. D. Trolinger, “Modeling the growth of triglycine sulfate crystals in Spacelab-3,” J. Cryst. Growth 92, 101–117 (1988).
[CrossRef]

Vedernikov, A. A.

L. L. Regel, A. A. Vedernikov, R. V. Ilinski, M. Melikhov, “Analysis of inertial random walk of particles in liquids under microgravity conditions,” in Proceedings of the Sixth European Symposium on Material Science Under Microgravity Conditions, European Space Agency, SP-256 Paris1987), pp. 593–597.

Vikram, C. S.

C. S. Vikram, Particle Field Holography (Cambridge U. Press, Cambridge, U.K., 1992).
[CrossRef]

Wang, G.

G. Wang, Z. Hao, “Image processing of a particle field hologram,” in Practical Holography IX, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2406, 369–373 (1995).

Wilcox, W. R.

R. B. Lal, A. K. Batra, J. D. Trolinger, W. R. Wilcox, B. Steiner, “Growth and characteristics of TGS crystals grown aboard first international microgravity laboratory (IML-1),” Ferroelectrics 1, 158–181 (1994).

H. Yoo, W. R. Wilcox, R. B. Lal, R. Trolinger, J. D. Trolinger, “Modeling the growth of triglycine sulfate crystals in Spacelab-3,” J. Cryst. Growth 92, 101–117 (1988).
[CrossRef]

R. B. Lal, J. D. Trolinger, W. R. Wilcox, R. L. Kroes, “Holographic flow field analysis in Spacelab-3 crystal growth experiment,” in Flow Visualization and Aero-Optics in Simulated Environments, H. T. Bentley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.788, 62–74 (1987).

Witherow, W K.

W K. Witherow, “Measuring residual accelerations in the spacelab environment,” in Crystal Growth in Space and Related Optical Diagnostics, R. B. Lal, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1557, 56–67 (1991).

Yoo, H.

H. Yoo, W. R. Wilcox, R. B. Lal, R. Trolinger, J. D. Trolinger, “Modeling the growth of triglycine sulfate crystals in Spacelab-3,” J. Cryst. Growth 92, 101–117 (1988).
[CrossRef]

Appl. Opt. (3)

Ferroelectrics (1)

R. B. Lal, A. K. Batra, J. D. Trolinger, W. R. Wilcox, B. Steiner, “Growth and characteristics of TGS crystals grown aboard first international microgravity laboratory (IML-1),” Ferroelectrics 1, 158–181 (1994).

Holography '89, Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. B. Gurevich, V. B. Konstantinov, D. P. Chernikh, “Interference and holography studies in space,” in Holography '89, Proc. Soc. Photo-Opt. Instrum. Eng. 1183, 479–485 (1989).

J. Cryst. Growth (1)

H. Yoo, W. R. Wilcox, R. B. Lal, R. Trolinger, J. D. Trolinger, “Modeling the growth of triglycine sulfate crystals in Spacelab-3,” J. Cryst. Growth 92, 101–117 (1988).
[CrossRef]

Opt. Eng. (1)

J. D. Trolinger, R. B. Lal, A. K. Batra, “Holographic instrumentation for monitoring crystal growth in space,” Opt. Eng. 30, 1608–1614 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids (2)

M. R. Maxey, J. J. Riley, “Equations of motion for a small rigid sphere in a non-uniform flow,” Phys. Fluids 26, 883–895 (1983).
[CrossRef]

H. Meng, F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7, 9–11 (1995).
[CrossRef]

Other (8)

W K. Witherow, “Measuring residual accelerations in the spacelab environment,” in Crystal Growth in Space and Related Optical Diagnostics, R. B. Lal, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1557, 56–67 (1991).

imagelab computer software, Warner Frei Associates, Santa Monica, Calif., Nov., 1992.

J. D. Trolinger, R. H. Rangel, R. B. Lal, “Methodologies for the micro-mechanics of microspheres in a fluid in microgravity,” in Proceedings of the International Invitational UACEM Symposium, Vol. 11 in the series, R. J. Pryputniewicz, ed. (Worcester Polytechnic Institute, Worcester, Mass., 1993), Chap. 37, pp. 517–534.

L. L. Regel, A. A. Vedernikov, R. V. Ilinski, M. Melikhov, “Analysis of inertial random walk of particles in liquids under microgravity conditions,” in Proceedings of the Sixth European Symposium on Material Science Under Microgravity Conditions, European Space Agency, SP-256 Paris1987), pp. 593–597.

C. S. Vikram, Particle Field Holography (Cambridge U. Press, Cambridge, U.K., 1992).
[CrossRef]

G. Wang, Z. Hao, “Image processing of a particle field hologram,” in Practical Holography IX, S. A. Benton, ed., Proc. Soc. Photo-Opt. Instrum. Eng.2406, 369–373 (1995).

R. B. Lal, J. D. Trolinger, W. R. Wilcox, R. L. Kroes, “Holographic flow field analysis in Spacelab-3 crystal growth experiment,” in Flow Visualization and Aero-Optics in Simulated Environments, H. T. Bentley, ed., Proc. Soc. Photo-Opt. Instrum. Eng.788, 62–74 (1987).

J. D. Trolinger, R. B. Lal, A. K. Batra, D. McIntosh, “Particle image velocimetry experiments for the IML-1 spaceflight,” in Crystal Growth in Space and Related Optical Diagnostics, R. B. Lal, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1557, 80–95 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic drawing of the optical layout of the fluids-experiment system (FES): HOE, holographic optical element (HOE1 and HOE2 are mounted on the window); A, angle between the optical axis and the space-shuttle axis; M, mirror; BS, beam splitter; C, crystal; O, lens; D, removable diffuser; F1 and F2, holograms 1 and 2, respectively; L, He–Ne laser underneath the FES; S, side window; W, window; P, parallel to the floor. Note that the rays from the window emerge at small angles with respect to one another, and this small angle permits them to be separated.

Fig. 2
Fig. 2

Diagrams of the orientations of (a) the FES cell and the crystal C (right side of drawing), with an enlarged view (left side of drawing) of the crystal mounted on its sting (holding device) as it appears when viewed through the window into the center of the test cell, and (b) the velocity vectors and spacecraft attitudes during the flight experiment. The dotted-dashed vertical line in (a) separates the illustration and also represents the shuttle's y axis. The shuttle axis A is also representative of the z axis of the shuttle. The dotted-dashed line running from the enlarged diagram of C to its full view indicates the line of sight between the two drawings.

Fig. 3
Fig. 3

Reconstructed image of a directly illuminated particle field focused at the center of the test cell.

Fig. 4
Fig. 4

Diagram of particle tracks in microgravity showing the convective field (by the directions of the arrows) around the crystal. This set of tracks was determined from fluid-flow run 1C, frames 78–102, plane A; the numbers along the axes are in units of micrometers. Convection persisted for many hours after each spacecraft maneuver.

Fig. 5
Fig. 5

Effects of g-jitter on a particle field in a fluid in micro-g's: X position versus time. Note that most of the particles move in concert, in response to g-jitter. The net distance in x (for all but three particles) is a measure of the residual gravity.

Fig. 6
Fig. 6

Residual acceleration versus time: The acceleration was computed from the particle data. The data-collection time included two shuttle maneuvers and one high-acceleration time period. Grav, gravity.

Metrics