Abstract

The celebrated Rigrod model [J. Appl. Phys. 34, 2602 (1963)] has recently been shown to be inadequate for calculating the output power of gas-flow lasers when the quenching of excited species is slow and the optical extraction efficiency is high [Opt. Lett. 20, 1480 (1995)]. The previous analysis of two-level systems is presented here in detail and extended to include the chemical oxygen-iodine laser (COIL). For both two-level systems and COIL’s, we obtained simple analytic formulas for the output power, which should be used instead of the Rigrod model. We present the formulas for Fabry–Perot, stable, and unstable resonators. Both the saturation parameter and the extraction efficiency differ from those appearing in the Rigrod model. The highest extraction efficiency is achievable for both stable and unstable resonators with uniform intensity distribution over the resonator cross section and is greater than that calculated by the Rigrod model. A rather surprising conclusion is that the extraction efficiency of unstable resonators can be increased substantially if one increases the length of the part of the mirrors lying downstream of the optical axis. The derived formulas are applied to describe published experimental results of supersonic COIL’s. The dependence of the power on the threshold gain is evaluated and from this the plenum yield of singlet oxygen is estimated. The value of the yield is in better agreement with experimental measurements than that obtained by the Rigrod model.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).
  2. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
  3. G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. QE-16, 546–549 (1980).
  4. D. L. Carroll, L. H. Sentman, “Maximizing output power of a low-gain laser system,” Appl. Opt. 32, 3930–3941 (1993).
  5. T. Hashimoto, S. Nakano, M. Hachijin, K. Komatsu, Y. Mine, H. Hara, “Characteristics of a downstream-mixing CO2 gasdynamic laser caused by behavior of two supersonic flows in a laser cavity,” Appl. Opt. 32, 5936–5943 (1993).
  6. J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).
  7. G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).
  8. J. Schmiedberger, J. Kodymova, O. Spalek, J. Kovar, “Experimental study of gain and output coupling characteristics of a cw chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 27, 1265–1270 (1991).
  9. K. Watanabe, S. Kashiwabara, K. Sawai, S. Toshima, R. Fujimoto, “Small signal gain and saturation parameter of a transverse-flow cw oxygen-iodine laser,” IEEE J. Quantum Electron. QE-19, 1699–1703 (1983).
  10. B. D. Barmashenko, S. Rosenwaks, “Optical extraction efficiency in gas flow lasers,” Opt. Lett. 20, 1480–1482 (1995).
  11. A. J. DeMaria, “Review of cw high-power CO2 lasers,” Proc. IEEE 61, 731–748 (1973).
  12. H. Mirels, “Interaction between unstable optical resonator and cw chemical laser,” AIAA J. 13, 785–791 (1975).
  13. P. V. Avizonis, G. Hasen, K. A. Truesdell, “The chemically pumped oxygen-iodine laser,” in High-Power Gas Lasers, C. A. Freed, F. K. Tittel, P. V. Avizonis, J. J. Kim, eds., Proc. SPIE 1225, 448–474 (1990).
  14. K. A. Truesdell, C. A. Helms, G. D. Hager, “A history of COIL development in the USA,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 217–237 (1994).
  15. S. Rosenwaks, B. D. Barmashenko, A. Elior, E. Lebiush, I. Blyvas, “Parametric studies of a small scale supersonic COIL,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 238–243 (1994).
  16. J. Handke, A. Werner, W. L. Bohn, W. O. Schall, “Multikilowatt supersonic chemical oxygen iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 266–271 (1994).
  17. W. Masuda, H. Yamada, N. Naitoh, H. Fujii, T. Atsuta, “Theoretical and experimental investigation on a supersonic flow chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 244–249 (1994).
  18. M. Zagidullin, “Liquid jet O2(1Δ) generator for chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 208–216 (1994).
  19. Q. Zhuang, F. Sang, F. Chen, B. Yang, C. Zhang, “Supersonic COIL research activities in Dalian, China,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 204–207 (1994).
  20. M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1986).
  21. D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).
  22. R. Highland, L. Hanko, G. Hager, K. Truesdell, “Spectral and saturation characteristics of COIL,” AIAA Paper 94-2439 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).
  23. D. A. Copeland, C. Warner, A. H. Bauer, “Simple model for optical extraction from a flowing oxygen-iodine medium using a Fabry-Perot resonator,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 474–499 (1990).
  24. Yu. A. Anan’ev, V. P. Trusov, V. E”. Sherstobitov, “Selection of an unstable resonator for a gasdynamic laser,” Sov. J. Quantum Electron. 6, 928–931 (1976).
  25. S. Yoshida, K. Shimizu, H. Tahil, I. Tanaka, “Application of a telescopic resonator to high-power chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 30, 160–166 (1994).

1995 (1)

1994 (1)

S. Yoshida, K. Shimizu, H. Tahil, I. Tanaka, “Application of a telescopic resonator to high-power chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 30, 160–166 (1994).

1993 (4)

D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).

D. L. Carroll, L. H. Sentman, “Maximizing output power of a low-gain laser system,” Appl. Opt. 32, 3930–3941 (1993).

T. Hashimoto, S. Nakano, M. Hachijin, K. Komatsu, Y. Mine, H. Hara, “Characteristics of a downstream-mixing CO2 gasdynamic laser caused by behavior of two supersonic flows in a laser cavity,” Appl. Opt. 32, 5936–5943 (1993).

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).

1991 (1)

J. Schmiedberger, J. Kodymova, O. Spalek, J. Kovar, “Experimental study of gain and output coupling characteristics of a cw chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 27, 1265–1270 (1991).

1986 (1)

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1986).

1983 (1)

K. Watanabe, S. Kashiwabara, K. Sawai, S. Toshima, R. Fujimoto, “Small signal gain and saturation parameter of a transverse-flow cw oxygen-iodine laser,” IEEE J. Quantum Electron. QE-19, 1699–1703 (1983).

1980 (1)

G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. QE-16, 546–549 (1980).

1976 (1)

Yu. A. Anan’ev, V. P. Trusov, V. E”. Sherstobitov, “Selection of an unstable resonator for a gasdynamic laser,” Sov. J. Quantum Electron. 6, 928–931 (1976).

1975 (1)

H. Mirels, “Interaction between unstable optical resonator and cw chemical laser,” AIAA J. 13, 785–791 (1975).

1973 (1)

A. J. DeMaria, “Review of cw high-power CO2 lasers,” Proc. IEEE 61, 731–748 (1973).

1965 (1)

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).

1963 (1)

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).

Anan’ev, Yu. A.

Yu. A. Anan’ev, V. P. Trusov, V. E”. Sherstobitov, “Selection of an unstable resonator for a gasdynamic laser,” Sov. J. Quantum Electron. 6, 928–931 (1976).

Anderson, B.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).

Atsuta, T.

W. Masuda, H. Yamada, N. Naitoh, H. Fujii, T. Atsuta, “Theoretical and experimental investigation on a supersonic flow chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 244–249 (1994).

Avizonis, P. V.

P. V. Avizonis, G. Hasen, K. A. Truesdell, “The chemically pumped oxygen-iodine laser,” in High-Power Gas Lasers, C. A. Freed, F. K. Tittel, P. V. Avizonis, J. J. Kim, eds., Proc. SPIE 1225, 448–474 (1990).

Barmashenko, B. D.

B. D. Barmashenko, S. Rosenwaks, “Optical extraction efficiency in gas flow lasers,” Opt. Lett. 20, 1480–1482 (1995).

S. Rosenwaks, B. D. Barmashenko, A. Elior, E. Lebiush, I. Blyvas, “Parametric studies of a small scale supersonic COIL,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 238–243 (1994).

Bauer, A. H.

D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).

D. A. Copeland, C. Warner, A. H. Bauer, “Simple model for optical extraction from a flowing oxygen-iodine medium using a Fabry-Perot resonator,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 474–499 (1990).

Blyvas, I.

S. Rosenwaks, B. D. Barmashenko, A. Elior, E. Lebiush, I. Blyvas, “Parametric studies of a small scale supersonic COIL,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 238–243 (1994).

Bohn, W. L.

J. Handke, A. Werner, W. L. Bohn, W. O. Schall, “Multikilowatt supersonic chemical oxygen iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 266–271 (1994).

Carroll, D. L.

Chen, F.

Q. Zhuang, F. Sang, F. Chen, B. Yang, C. Zhang, “Supersonic COIL research activities in Dalian, China,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 204–207 (1994).

Copeland, D. A.

D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).

D. A. Copeland, C. Warner, A. H. Bauer, “Simple model for optical extraction from a flowing oxygen-iodine medium using a Fabry-Perot resonator,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 474–499 (1990).

Crowell, P.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).

Crowell, P. G.

J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

DeMaria, A. J.

A. J. DeMaria, “Review of cw high-power CO2 lasers,” Proc. IEEE 61, 731–748 (1973).

Elior, A.

S. Rosenwaks, B. D. Barmashenko, A. Elior, E. Lebiush, I. Blyvas, “Parametric studies of a small scale supersonic COIL,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 238–243 (1994).

Erkkila, J.

J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

Fujii, H.

W. Masuda, H. Yamada, N. Naitoh, H. Fujii, T. Atsuta, “Theoretical and experimental investigation on a supersonic flow chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 244–249 (1994).

Fujimoto, R.

K. Watanabe, S. Kashiwabara, K. Sawai, S. Toshima, R. Fujimoto, “Small signal gain and saturation parameter of a transverse-flow cw oxygen-iodine laser,” IEEE J. Quantum Electron. QE-19, 1699–1703 (1983).

Hachijin, M.

Hager, G.

R. Highland, L. Hanko, G. Hager, K. Truesdell, “Spectral and saturation characteristics of COIL,” AIAA Paper 94-2439 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

Hager, G. D.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).

K. A. Truesdell, C. A. Helms, G. D. Hager, “A history of COIL development in the USA,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 217–237 (1994).

J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

Handke, J.

J. Handke, A. Werner, W. L. Bohn, W. O. Schall, “Multikilowatt supersonic chemical oxygen iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 266–271 (1994).

Hanko, L.

R. Highland, L. Hanko, G. Hager, K. Truesdell, “Spectral and saturation characteristics of COIL,” AIAA Paper 94-2439 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

Hara, H.

Hasen, G.

P. V. Avizonis, G. Hasen, K. A. Truesdell, “The chemically pumped oxygen-iodine laser,” in High-Power Gas Lasers, C. A. Freed, F. K. Tittel, P. V. Avizonis, J. J. Kim, eds., Proc. SPIE 1225, 448–474 (1990).

Hashimoto, T.

Helms, C. A.

J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

K. A. Truesdell, C. A. Helms, G. D. Hager, “A history of COIL development in the USA,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 217–237 (1994).

Highland, R.

R. Highland, L. Hanko, G. Hager, K. Truesdell, “Spectral and saturation characteristics of COIL,” AIAA Paper 94-2439 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

Hon, J. H.

J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

Hunt, B. S.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).

Igoshin, V. I.

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1986).

Kashiwabara, S.

K. Watanabe, S. Kashiwabara, K. Sawai, S. Toshima, R. Fujimoto, “Small signal gain and saturation parameter of a transverse-flow cw oxygen-iodine laser,” IEEE J. Quantum Electron. QE-19, 1699–1703 (1983).

Kodymova, J.

J. Schmiedberger, J. Kodymova, O. Spalek, J. Kovar, “Experimental study of gain and output coupling characteristics of a cw chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 27, 1265–1270 (1991).

Komatsu, K.

Kopf, D.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).

Kovar, J.

J. Schmiedberger, J. Kodymova, O. Spalek, J. Kovar, “Experimental study of gain and output coupling characteristics of a cw chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 27, 1265–1270 (1991).

Kupriyanov, N. L.

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1986).

Lebiush, E.

S. Rosenwaks, B. D. Barmashenko, A. Elior, E. Lebiush, I. Blyvas, “Parametric studies of a small scale supersonic COIL,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 238–243 (1994).

Masuda, W.

W. Masuda, H. Yamada, N. Naitoh, H. Fujii, T. Atsuta, “Theoretical and experimental investigation on a supersonic flow chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 244–249 (1994).

Mine, Y.

Mirels, H.

H. Mirels, “Interaction between unstable optical resonator and cw chemical laser,” AIAA J. 13, 785–791 (1975).

Naitoh, N.

W. Masuda, H. Yamada, N. Naitoh, H. Fujii, T. Atsuta, “Theoretical and experimental investigation on a supersonic flow chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 244–249 (1994).

Nakano, S.

Plummer, D. N.

J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

Rigrod, W. W.

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).

Rosenwaks, S.

B. D. Barmashenko, S. Rosenwaks, “Optical extraction efficiency in gas flow lasers,” Opt. Lett. 20, 1480–1482 (1995).

S. Rosenwaks, B. D. Barmashenko, A. Elior, E. Lebiush, I. Blyvas, “Parametric studies of a small scale supersonic COIL,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 238–243 (1994).

Sang, F.

Q. Zhuang, F. Sang, F. Chen, B. Yang, C. Zhang, “Supersonic COIL research activities in Dalian, China,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 204–207 (1994).

Sawai, K.

K. Watanabe, S. Kashiwabara, K. Sawai, S. Toshima, R. Fujimoto, “Small signal gain and saturation parameter of a transverse-flow cw oxygen-iodine laser,” IEEE J. Quantum Electron. QE-19, 1699–1703 (1983).

Schall, W. O.

J. Handke, A. Werner, W. L. Bohn, W. O. Schall, “Multikilowatt supersonic chemical oxygen iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 266–271 (1994).

Schindler, G. M.

G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. QE-16, 546–549 (1980).

Schmiedberger, J.

J. Schmiedberger, J. Kodymova, O. Spalek, J. Kovar, “Experimental study of gain and output coupling characteristics of a cw chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 27, 1265–1270 (1991).

Sentman, L. H.

Sherstobitov, V. E”.

Yu. A. Anan’ev, V. P. Trusov, V. E”. Sherstobitov, “Selection of an unstable resonator for a gasdynamic laser,” Sov. J. Quantum Electron. 6, 928–931 (1976).

Shimizu, K.

S. Yoshida, K. Shimizu, H. Tahil, I. Tanaka, “Application of a telescopic resonator to high-power chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 30, 160–166 (1994).

Spalek, O.

J. Schmiedberger, J. Kodymova, O. Spalek, J. Kovar, “Experimental study of gain and output coupling characteristics of a cw chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 27, 1265–1270 (1991).

Tahil, H.

S. Yoshida, K. Shimizu, H. Tahil, I. Tanaka, “Application of a telescopic resonator to high-power chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 30, 160–166 (1994).

Tanaka, I.

S. Yoshida, K. Shimizu, H. Tahil, I. Tanaka, “Application of a telescopic resonator to high-power chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 30, 160–166 (1994).

Toshima, S.

K. Watanabe, S. Kashiwabara, K. Sawai, S. Toshima, R. Fujimoto, “Small signal gain and saturation parameter of a transverse-flow cw oxygen-iodine laser,” IEEE J. Quantum Electron. QE-19, 1699–1703 (1983).

Truesdell, K.

R. Highland, L. Hanko, G. Hager, K. Truesdell, “Spectral and saturation characteristics of COIL,” AIAA Paper 94-2439 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

Truesdell, K. A.

K. A. Truesdell, C. A. Helms, G. D. Hager, “A history of COIL development in the USA,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 217–237 (1994).

P. V. Avizonis, G. Hasen, K. A. Truesdell, “The chemically pumped oxygen-iodine laser,” in High-Power Gas Lasers, C. A. Freed, F. K. Tittel, P. V. Avizonis, J. J. Kim, eds., Proc. SPIE 1225, 448–474 (1990).

J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

Trusov, V. P.

Yu. A. Anan’ev, V. P. Trusov, V. E”. Sherstobitov, “Selection of an unstable resonator for a gasdynamic laser,” Sov. J. Quantum Electron. 6, 928–931 (1976).

Warner, C.

D. A. Copeland, C. Warner, A. H. Bauer, “Simple model for optical extraction from a flowing oxygen-iodine medium using a Fabry-Perot resonator,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 474–499 (1990).

Watanabe, K.

K. Watanabe, S. Kashiwabara, K. Sawai, S. Toshima, R. Fujimoto, “Small signal gain and saturation parameter of a transverse-flow cw oxygen-iodine laser,” IEEE J. Quantum Electron. QE-19, 1699–1703 (1983).

Werner, A.

J. Handke, A. Werner, W. L. Bohn, W. O. Schall, “Multikilowatt supersonic chemical oxygen iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 266–271 (1994).

Woolisher, C.

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).

Yamada, H.

W. Masuda, H. Yamada, N. Naitoh, H. Fujii, T. Atsuta, “Theoretical and experimental investigation on a supersonic flow chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 244–249 (1994).

Yang, B.

Q. Zhuang, F. Sang, F. Chen, B. Yang, C. Zhang, “Supersonic COIL research activities in Dalian, China,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 204–207 (1994).

Yoshida, S.

S. Yoshida, K. Shimizu, H. Tahil, I. Tanaka, “Application of a telescopic resonator to high-power chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 30, 160–166 (1994).

Zagidullin, M.

M. Zagidullin, “Liquid jet O2(1Δ) generator for chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 208–216 (1994).

Zagidullin, M. V.

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1986).

Zhang, C.

Q. Zhuang, F. Sang, F. Chen, B. Yang, C. Zhang, “Supersonic COIL research activities in Dalian, China,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 204–207 (1994).

Zhuang, Q.

Q. Zhuang, F. Sang, F. Chen, B. Yang, C. Zhang, “Supersonic COIL research activities in Dalian, China,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 204–207 (1994).

AIAA J. (1)

H. Mirels, “Interaction between unstable optical resonator and cw chemical laser,” AIAA J. 13, 785–791 (1975).

Appl. Opt. (2)

IEEE J. Quantum Electron. (6)

S. Yoshida, K. Shimizu, H. Tahil, I. Tanaka, “Application of a telescopic resonator to high-power chemical oxygen-iodine lasers,” IEEE J. Quantum Electron. 30, 160–166 (1994).

D. A. Copeland, A. H. Bauer, “Optical saturation and extraction from the chemical oxygen-iodine laser medium,” IEEE J. Quantum Electron. 29, 2525–2539 (1993).

G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. QE-16, 546–549 (1980).

G. D. Hager, D. Kopf, B. S. Hunt, B. Anderson, C. Woolisher, P. Crowell, “The chemical oxygen iodine laser in the presence of a magnetic field I: gain measurements and polarization effects,” IEEE J. Quantum Electron. 29, 933–943 (1993).

J. Schmiedberger, J. Kodymova, O. Spalek, J. Kovar, “Experimental study of gain and output coupling characteristics of a cw chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 27, 1265–1270 (1991).

K. Watanabe, S. Kashiwabara, K. Sawai, S. Toshima, R. Fujimoto, “Small signal gain and saturation parameter of a transverse-flow cw oxygen-iodine laser,” IEEE J. Quantum Electron. QE-19, 1699–1703 (1983).

J. Appl. Phys. (2)

W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602–2609 (1963).

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).

Opt. Lett. (1)

Proc. IEEE (1)

A. J. DeMaria, “Review of cw high-power CO2 lasers,” Proc. IEEE 61, 731–748 (1973).

Sov. J. Quantum Electron. (2)

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Kinetics of saturation of the active medium of an oxygen-iodine laser,” Sov. J. Quantum Electron. 14, 930–936 (1986).

Yu. A. Anan’ev, V. P. Trusov, V. E”. Sherstobitov, “Selection of an unstable resonator for a gasdynamic laser,” Sov. J. Quantum Electron. 6, 928–931 (1976).

Other (10)

R. Highland, L. Hanko, G. Hager, K. Truesdell, “Spectral and saturation characteristics of COIL,” AIAA Paper 94-2439 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

D. A. Copeland, C. Warner, A. H. Bauer, “Simple model for optical extraction from a flowing oxygen-iodine medium using a Fabry-Perot resonator,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE 1224, 474–499 (1990).

J. H. Hon, D. N. Plummer, P. G. Crowell, J. Erkkila, G. D. Hager, C. A. Helms, K. A. Truesdell, “A heuristic method for evaluating COIL performance,” AIAA Paper 94-2422 (American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, N.Y. 10019, 1994).

P. V. Avizonis, G. Hasen, K. A. Truesdell, “The chemically pumped oxygen-iodine laser,” in High-Power Gas Lasers, C. A. Freed, F. K. Tittel, P. V. Avizonis, J. J. Kim, eds., Proc. SPIE 1225, 448–474 (1990).

K. A. Truesdell, C. A. Helms, G. D. Hager, “A history of COIL development in the USA,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 217–237 (1994).

S. Rosenwaks, B. D. Barmashenko, A. Elior, E. Lebiush, I. Blyvas, “Parametric studies of a small scale supersonic COIL,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 238–243 (1994).

J. Handke, A. Werner, W. L. Bohn, W. O. Schall, “Multikilowatt supersonic chemical oxygen iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 266–271 (1994).

W. Masuda, H. Yamada, N. Naitoh, H. Fujii, T. Atsuta, “Theoretical and experimental investigation on a supersonic flow chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 244–249 (1994).

M. Zagidullin, “Liquid jet O2(1Δ) generator for chemical oxygen-iodine laser,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 208–216 (1994).

Q. Zhuang, F. Sang, F. Chen, B. Yang, C. Zhang, “Supersonic COIL research activities in Dalian, China,” in Gas Flow and Chemical Lasers: Tenth International Symposium, W. L. Bohn, H. Huegel, eds., Proc. SPIE 2502, 204–207 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Gain saturation in the GDL and the COIL compared with homogeneous saturation. g/g 0 is a function of I/I s for homogeneous saturation and of I/I s , g for the GDL and the COIL.

Fig. 2
Fig. 2

Dependencies of the extraction efficiency ηextm on g th/g 0. (a) The two-level system, (b) the COIL (Y i = 0.4 and T = 150 K): 1, the Rigrod model; 3, stable resonator with constant intensity; 4, unstable resonator with M − 1 ≪ 1; 5, unstable resonator with greater M and constant intensity; 2, corresponds to the chemical laser model [Eq. (T2) of Table 1] in (a) and to the Fabry–Perot resonator [Eq. (T5) of Table 1] in (b). For curves 4 and 5 r ≡ (l resx c )/x c = 2.

Fig. 3
Fig. 3

Dependency of the extraction efficiency ηextm of an unstable resonator in the COIL on the ratio r between the sections of the mirror lying downstream and upstream of the optical axis.

Fig. 4
Fig. 4

Comparison between the extraction efficiencies ηextm for the two-level system and the COIL for the stable resonator with constant intensity. For the COIL Y i = 0.4 and T = 150 K.

Fig. 5
Fig. 5

Fitting of the Rigrod model and the model of a two-level system with a stable resonator and constant intensity to the experimental dependence P(g th) obtained in Ref. 6 for the RotoCOIL.

Tables (2)

Tables Icon

Table 1 Extraction Efficiencies ηextm for Different Types of Resonator for the Two-Level System and the COILa

Tables Icon

Table 2 RotoCOIL Parametersa

Equations (51)

Equations on this page are rendered with MathJax. Learn more.

P = P av η ext ,
P av = I s g 0 L S .
η ext = η extm η extr ,
η extm = 1 - g th g 0 ,
η extr = t t + a = g th 2 L - a g th 2 L ,
I s = h ν σ τ ( 1 + g u / g 1 ) ,
g = g 0 1 + I / I s .
U d N u d x = W - N u τ - σ ( N u - g u g l N l ) ( I h ν ) ,
U d N l d x = N u τ + σ ( N u - g u g l N l ) ( I h ν ) .
U d g d x = W σ - σ N g u g l + g / σ τ - σ ( 1 + g u g l ) g [ I ( x ) / h ν ] ,
U d g d x = W σ - σ ( 1 + g u g l ) g [ I ( x ) / h ν ] .
P = η extr L H 0 l r g l d x ,
P av = I s , g g 0 , max L S ,
I s , g = h ν σ ( l res / U ) ( 1 + g u / g l ) ,
g 0 , max = g i + σ W l r U
η extm = 1 - g f g i + W σ ( l r / U ) ,
g = g i exp ( I I s , g x l res ) ,
g av = 0 l res g d x l res
g av = g 0 [ 1 - exp ( - I / I s , g ) ] I / I s , g ,
1 ( x e - x ) d - 1 d [ ( x c - x ) d ] d x = g g th I ,
g ( x ) = g i ( g 0 / g th ) ( x / x c ) + [ 1 - ( x / x c ) ] ,
I ( x ) = I s , g ( l res x c ) g ( x ) / g th - 1 ( 1 - x / x c ) .
g = g i ( g th g i ) ( x / x c ) ,
I = I s , g ( l res x c ) ln ( g i g th ) .
O 2 ( 1 Δ ) + I O 2 ( 3 Σ ) + I *
U d [ O 2 ( 1 Δ ) ] d x = - g ( I h ν )
g = g 00 I + I / I s ,
g 00 = σ [ I ] 0 2 ( 2 K e + 1 ) Y - 1 ( K e - 1 ) Y + 1 ,
I s h ν 2 k f [ O 2 ] 3 σ [ ( K e - 1 ) Y + 1 ] ,
d Y d ξ = - ( Y - 1 2 K e + 1 ) [ ( K e - 1 ) Y i + 1 ] [ ( K e - 1 ) Y + 1 ] I I s , g ,
I s , g h ν σ ( l res / U ) ( [ I ] 0 / [ O 2 ] 2 [ ( K e - 1 ) Y i + 1 ] ( 2 K e + 1 ) .
η extm = Y i - Y f Y i - 1 / ( 2 K e + 1 ) ,
Y th = 1 2 K e + 1 + g th g 0 3 K e ( 2 K e + 1 ) ( K e - 1 ) Y i - 1 / ( 2 K e + 1 ) [ Y i + 1 / ( K e - 1 ) - ( g th / g 0 ) ( Y i - 1 2 K e + 1 ) ] ,
g av = g 0 η extm I / I s , g ,
3 K e 2 K e + 1 ln ( 1 - η extm ) - ( K e - 1 ) ( Y i - 1 2 K e + 1 ) η extm = - ( I / I s , g ) [ ( K e - 1 ) Y i + 1 ] .
I = η extm [ O 2 ] U [ Y i - 1 / ( 2 K e + 1 ) ] / ( l res g th ) .
( Y - Y th Y i - Y th ) [ Y i - 1 / ( 2 K e + 1 ) Y - 1 / ( 2 K e + 1 ) ] ν = 1 - x x c , ν = 1 - Y i - 1 / ( 2 K e + 1 ) Y i + 1 / ( K e - 1 ) ( g th g 0 ) ,
I = I s , g l res x c g 0 g th ( Y i - Y th ) [ Y i - 1 / ( 2 K e + 1 ) ] ν + 1 × [ Y - 1 / ( 2 K e + 1 ) ] ν .
η extr = ( 1 - R out - S out ) / [ ( 1 - R out - S out ) ( 1 + δ ) + S out + ( R out / R max ) 1 / 2 ( 1 - R max ) ] ,
1 - g th g 0
η extm , F - P : ( 1 - g th g 0 ) / ( 1 - g t h g 0 Y i - 1 2 K e + 1 Y i + 1 K e - 1 )
η extm + ( g th g 0 ) ln ( 1 - η extm ) = 0
η extm + ( 1 - η extm , F - P ) ln ( 1 - η extm ) = 0
g th g 0 y 2 ,
2 y { 1 - 1 y [ 1 - exp ( - y ) ] } = g th g 0
1 - 1 ( 1 + r ) / ( g th / g 0 ) - r
( 1 - η extm / η extm , F - P ) ( 1 - η extm ) - ν = - r , ν = 1 - Y i - 1 / ( 2 K e + 1 ) Y i + 1 / ( K e - 1 ) ( g th g 0 ) ,
1 - ( g th g 0 ) ( 1 + r ) ,
3 K e 2 K e + 1 ln [ ( 1 - η extm , F - P ) 1 + r ( 1 - η extm ) ] - ( K e - 1 ) ( Y i 1 2 K e + 1 ) [ ( 1 + r ) η extm , F - P - η extm ] = 0
U d g d x = - ( 1 + g u g l ) g ( I 0 / h ν ) f ( x / l res ) , x - ,             g = g i ;             - g f ( x / l res ) d x = g th l res .
U d g d y = - ( 1 + g u g l ) g ( I 0 / h ν ) ; y = 0 ,             g = g i ;             0 1 g d y = g th l res .

Metrics