Abstract

We describe graded-index polymer optical fibers with high bandwidth (5.12 GHz for 100-m transmission) and low loss in the near-infrared region (56 and 115 dB/km at wavelengths of 688 and 773 nm, respectively) that we successfully obtained with a new interfacial-gel polymerization technique using an all-deuterated methyl methacrylate monomer and a partially fluorinated acrylate monomer. The necessity for both low attenuation and high bandwidth for a polymer optical fiber is described for its use as a physical media in a high-speed multimedia network. © 1996 Optical Society of America

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Emslie, “Review of polymer optical fibers,” J. Mater. Sci. 23, 2281–2293 (1988).
  2. T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).
  3. T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth and high numerical aperture graded-index polymer optical fibre,” Electron. Lett. 30, 1169–1170 (1994).
  4. W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).
  5. M. H. Schleinitz, “Ductile plastic optical fibers with improved visible and near infrared transmission,” Int. Wire Cable Symp. 26, 352–355 (1977).
  6. R. Olshansky, D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt. 15, 483–491 (1976).
  7. J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 · SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).
  8. M. Kitazawa, POF Data Book (MRC Techno Research, Inc., Tokyo, Japan, 1993).

1994

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth and high numerical aperture graded-index polymer optical fibre,” Electron. Lett. 30, 1169–1170 (1994).

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).

1988

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).

C. Emslie, “Review of polymer optical fibers,” J. Mater. Sci. 23, 2281–2293 (1988).

1977

M. H. Schleinitz, “Ductile plastic optical fibers with improved visible and near infrared transmission,” Int. Wire Cable Symp. 26, 352–355 (1977).

1976

J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 · SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).

R. Olshansky, D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt. 15, 483–491 (1976).

Emslie, C.

C. Emslie, “Review of polymer optical fibers,” J. Mater. Sci. 23, 2281–2293 (1988).

Fleming, J. W.

J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 · SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).

Groh, W.

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).

Horibe, A.

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth and high numerical aperture graded-index polymer optical fibre,” Electron. Lett. 30, 1169–1170 (1994).

Ishigure, T.

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth and high numerical aperture graded-index polymer optical fibre,” Electron. Lett. 30, 1169–1170 (1994).

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).

Keck, D. B.

Kitazawa, M.

M. Kitazawa, POF Data Book (MRC Techno Research, Inc., Tokyo, Japan, 1993).

Koike, Y.

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth and high numerical aperture graded-index polymer optical fibre,” Electron. Lett. 30, 1169–1170 (1994).

Nihei, E.

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth and high numerical aperture graded-index polymer optical fibre,” Electron. Lett. 30, 1169–1170 (1994).

T. Ishigure, E. Nihei, Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt. 33, 4261–4266 (1994).

Olshansky, R.

Schleinitz, M. H.

M. H. Schleinitz, “Ductile plastic optical fibers with improved visible and near infrared transmission,” Int. Wire Cable Symp. 26, 352–355 (1977).

Appl. Opt.

Electron. Lett.

T. Ishigure, A. Horibe, E. Nihei, Y. Koike, “High-bandwidth and high numerical aperture graded-index polymer optical fibre,” Electron. Lett. 30, 1169–1170 (1994).

Int. Wire Cable Symp.

M. H. Schleinitz, “Ductile plastic optical fibers with improved visible and near infrared transmission,” Int. Wire Cable Symp. 26, 352–355 (1977).

J. Am. Ceram. Soc.

J. W. Fleming, “Material and mode dispersion in GeO2 · B2O3 · SiO2 glasses,” J. Am. Ceram. Soc. 59, 503–507 (1976).

J. Mater. Sci.

C. Emslie, “Review of polymer optical fibers,” J. Mater. Sci. 23, 2281–2293 (1988).

Makromol. Chem.

W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988).

Other

M. Kitazawa, POF Data Book (MRC Techno Research, Inc., Tokyo, Japan, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Comparison of the refractive-index profile between PMMA-based and PMMA-d8-based GI preforms: (A) MMA-d8–BB-d5 system, (B) MMA–BB system.

Fig. 2
Fig. 2

Refractive-index distribution of a poly-HFIP 2-FA-based GI POF.

Fig. 3
Fig. 3

Comparison of the total attenuation spectra of (A) PMMA-based, (B) poly-HFIP 2-FA-based, (C) PMMA-d8 based GI POF’s.

Fig. 4
Fig. 4

Spectral overtone positions versus absorption loss of different C–X vibrations in conventional acrylate polymers: ●, carbon–hydrogen bond; ■, carbon–deuterium bond; ▲, carbon–fluorine bond.

Fig. 5
Fig. 5

Schematic representation of the impulse response function measurement.

Fig. 6
Fig. 6

Pulse broadening through PMMA-d8-based GI and PMMA-based SI POF’s. Fiber length is 38 m.

Fig. 7
Fig. 7

Pulse broadening through poly-HFIP 2-FA-based GI and PMMA-based SI POF’s. Fiber length is 24 m.

Fig. 8
Fig. 8

Material dispersion of (A) PMMA and (B) poly-HFIP 2-FA.

Tables (1)

Tables Icon

Table 1 Comparison of Light Transmission Attenuation-POF’s

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G ( v ) = ν 0 ( v + 1 / 2 ) - ν 0 χ ( v + 1 / 2 ) 2 ,
ν v = G ( v ) - G ( 0 ) = ν v - χ ν 0 ν ( v + 1 ) .
ν v = [ ν 1 v - χ ν 1 v ( v + 1 ) ] / ( 1 - 2 χ ) .
D max ( ν v C - X ) = 3.2 × 10 8 ( ρ M G ) N c ( E v E 1 C - H ) C - X ,
n ( r ) = n 0 [ 1 - ( r / R p ) g Δ ] ,
g opt = 2 + ɛ - Δ ( 4 + ɛ ) ( 3 + ɛ ) 5 + 2 ɛ .
g opt = 2 + 12 5 Δ .
D mat = - λ c d 2 n d λ 2 ,

Metrics