Abstract

We describe the four-laser airborne infrared (FLAIR) instrument, a tunable diode laser absorption spectrometer designed for simultaneous high-sensitivity in situ measurements of four atmospheric trace gases in the troposphere. The FLAIR spectrometer was employed during the large-scale airborne research campaign on tropospheric ozone (TROPOZ II) in 1991 and was used to measure CO, H2O2, HCHO, and NO2 in the free troposphere where detection limits below 100 parts in 1012 by volume were achieved.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994).
  2. D. R. Hastie, M. D. Miller, “Balloon-borne tunable diode laser absorption spectrometer for multispecies trace gas measurements in the stratosphere,” Appl. Opt. 24, 3694–3701 (1985).
  3. C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, j(NO2), CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. D 10, 11931–11950 (1987).
  4. J. Podolske, M. Loewenstein, “Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere,” Appl. Opt. 32, 5324–5333 (1993).
  5. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994).
  6. G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor, using a tunable diode laser absorption technique,” J. Geophys. Res. D 92, 2071–2081 (1987).
  7. R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).
  8. G. W. Sachse, Atmospheric Science Division, NASA Langley Research Center, Hampton, Va. (personal communication, 1996).
  9. H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. D 95, 10147–10153 (1990).
  10. M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).
  11. A. Marenco, I. Jonquières, H. Gouget, P. Nédélec, “Experimental determinations of meridional distribution and long term evolution of tropospheric ozone—consequences on radiative forcing,” in Atmospheric Ozone as a Climate Gas, W.-C. Wang, I. S. A. Isaksen, eds., Vol. 132 of NATO ASI Series (Springer-Verlag, Berlin, 1995), pp. 305–319.
  12. V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).
  13. W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982).
  14. J. Reid, B. K. Garside, J. Shewchun, M. El-Sherbiny, E. A. Ballik, “High sensitivity point monitoring of atmospheric gases employing tunable diode lasers,” Appl. Opt. 17, 1806–1810 (1978).
  15. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer with application to the detection of NO2 at the 100 pptv level,” Appl. Opt. 19, 3349–3353 (1980).
  16. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
  17. C. R. Webster, “Brewster plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable laser absorption sensitivities,” J. Opt. Soc. Am. B 2, 1464–1470 (1985).
  18. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–291 (1942).
  19. J. U. White, “Very long optical paths in air,” J. Opt. Soc. Am. 66, 411–416 (1976).
  20. B. Arlander, D. Brüning, U. Schmidt, D. H. Ehhalt, “The tropospheric distribution of formaldehyde during TROPOZ II,” J. Atmos. Chem. 22, 257–268 (1995).
  21. B. Arlander, IVL Institutet för Vattenoch Luftvardsforskning, Swedish Environmental Research Institute, S-40258 Göteborg, Sweden (personal communication, 1992).
  22. T. Zenker, “Absorptionsspektroskopische Messungen troposphärischer Spurengase in der bodennahen Grenzschicht über dem Atlantik,” Ph.D. dissertation (University Mainz, Mainz, Germany, 1990), Chap. 3.4.3, pp. 96–101.
  23. A. Marenco, Laboratoire d’Aérologie, CNRS, 31400 Toulouse, France (personal communication, 1992).
  24. J. Roths, “Entwicklung eines flugtauglichen, laserspektroskopischen Spurengassensors und dessen Einsatz bei der TROPOZ-II-Flugmesskampagne,” Ph.D. dissertation (University Mainz, Mainz, Germany, 1992).
  25. J. Roths, G. W. Harris, “The tropospheric distribution of carbon monoxide as observed during the TROPOZ II experiment,” J. Atmos. Chem. 24, 157–188 (1996).
  26. G. W. Harris, T. Zenker, F. Wienhold, “Airborne observation of strong biogenic NOx emissions from the Namibian Savanna during SAFARI 92,” J. Geophys. Res. to be published.
  27. H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

1996

J. Roths, G. W. Harris, “The tropospheric distribution of carbon monoxide as observed during the TROPOZ II experiment,” J. Atmos. Chem. 24, 157–188 (1996).

1995

B. Arlander, D. Brüning, U. Schmidt, D. H. Ehhalt, “The tropospheric distribution of formaldehyde during TROPOZ II,” J. Atmos. Chem. 22, 257–268 (1995).

1994

1993

1992

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

1990

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. D 95, 10147–10153 (1990).

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

1987

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor, using a tunable diode laser absorption technique,” J. Geophys. Res. D 92, 2071–2081 (1987).

C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, j(NO2), CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. D 10, 11931–11950 (1987).

1985

1982

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

1981

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).

1980

1978

1976

1942

Albritton, D. L.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Arlander, B.

B. Arlander, D. Brüning, U. Schmidt, D. H. Ehhalt, “The tropospheric distribution of formaldehyde during TROPOZ II,” J. Atmos. Chem. 22, 257–268 (1995).

B. Arlander, IVL Institutet för Vattenoch Luftvardsforskning, Swedish Environmental Research Institute, S-40258 Göteborg, Sweden (personal communication, 1992).

Bachmeier, A. S.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Ballik, E. A.

Bartlett, K. B.

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

Bechara, J.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994).

Beck, S. M.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Bradshaw, J. D.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Brüning, D.

B. Arlander, D. Brüning, U. Schmidt, D. H. Ehhalt, “The tropospheric distribution of formaldehyde during TROPOZ II,” J. Atmos. Chem. 22, 257–268 (1995).

Camy-Peyret, C.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

Carroll, M. A.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Chave, R. G.

Collins, J. E.

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

Condon, E. P.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Davis, D. D.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Demtröder, W.

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982).

Ehhalt, D. H.

B. Arlander, D. Brüning, U. Schmidt, D. H. Ehhalt, “The tropospheric distribution of formaldehyde during TROPOZ II,” J. Atmos. Chem. 22, 257–268 (1995).

El-Sherbiny, M.

Fischer, H.

H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

Flaud, J.-M.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

Fridovich, B.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

Garside, B. K.

Gouget, H.

A. Marenco, I. Jonquières, H. Gouget, P. Nédélec, “Experimental determinations of meridional distribution and long term evolution of tropospheric ozone—consequences on radiative forcing,” in Atmospheric Ozone as a Climate Gas, W.-C. Wang, I. S. A. Isaksen, eds., Vol. 132 of NATO ASI Series (Springer-Verlag, Berlin, 1995), pp. 305–319.

Gregory, G. L.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Harder, H.

H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

Harris, G. W.

J. Roths, G. W. Harris, “The tropospheric distribution of carbon monoxide as observed during the TROPOZ II experiment,” J. Atmos. Chem. 24, 157–188 (1996).

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. D 95, 10147–10153 (1990).

H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

G. W. Harris, T. Zenker, F. Wienhold, “Airborne observation of strong biogenic NOx emissions from the Namibian Savanna during SAFARI 92,” J. Geophys. Res. to be published.

Harriss, R. C.

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

Hastie, D. R.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. D 95, 10147–10153 (1990).

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

D. R. Hastie, M. D. Miller, “Balloon-borne tunable diode laser absorption spectrometer for multispecies trace gas measurements in the stratosphere,” Appl. Opt. 24, 3694–3701 (1985).

Hill, G. F.

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor, using a tunable diode laser absorption technique,” J. Geophys. Res. D 92, 2071–2081 (1987).

Hubler, G.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Jones, G. D.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

Jonquières, I.

A. Marenco, I. Jonquières, H. Gouget, P. Nédélec, “Experimental determinations of meridional distribution and long term evolution of tropospheric ozone—consequences on radiative forcing,” in Atmospheric Ozone as a Climate Gas, W.-C. Wang, I. S. A. Isaksen, eds., Vol. 132 of NATO ASI Series (Springer-Verlag, Berlin, 1995), pp. 305–319.

Karecki, D. R.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. D 95, 10147–10153 (1990).

Kendall, J.

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).

Loewenstein, M.

Mackay, G. I.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. D 95, 10147–10153 (1990).

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994).

Madronich, S.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Malathy Devi, V.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

Marenco, A.

A. Marenco, I. Jonquières, H. Gouget, P. Nédélec, “Experimental determinations of meridional distribution and long term evolution of tropospheric ozone—consequences on radiative forcing,” in Atmospheric Ozone as a Climate Gas, W.-C. Wang, I. S. A. Isaksen, eds., Vol. 132 of NATO ASI Series (Springer-Verlag, Berlin, 1995), pp. 305–319.

A. Marenco, Laboratoire d’Aérologie, CNRS, 31400 Toulouse, France (personal communication, 1992).

May, R. D.

C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in-situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3,” Appl. Opt. 33, 454–472 (1994).

C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, j(NO2), CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. D 10, 11931–11950 (1987).

Miller, M. D.

Montzka, D. D.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Narahari Rao, K.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

Nédélec, P.

A. Marenco, I. Jonquières, H. Gouget, P. Nédélec, “Experimental determinations of meridional distribution and long term evolution of tropospheric ozone—consequences on radiative forcing,” in Atmospheric Ozone as a Climate Gas, W.-C. Wang, I. S. A. Isaksen, eds., Vol. 132 of NATO ASI Series (Springer-Verlag, Berlin, 1995), pp. 305–319.

Novelli, P. C.

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

Palash, P. D.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

Perry, M. G.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor, using a tunable diode laser absorption technique,” J. Geophys. Res. D 92, 2071–2081 (1987).

Podolske, J.

Reid, J.

Ridley, B. A.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Rodgers, M. O.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Roths, J.

J. Roths, G. W. Harris, “The tropospheric distribution of carbon monoxide as observed during the TROPOZ II experiment,” J. Atmos. Chem. 24, 157–188 (1996).

H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

J. Roths, “Entwicklung eines flugtauglichen, laserspektroskopischen Spurengassensors und dessen Einsatz bei der TROPOZ-II-Flugmesskampagne,” Ph.D. dissertation (University Mainz, Mainz, Germany, 1992).

Sachse, G. W.

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor, using a tunable diode laser absorption technique,” J. Geophys. Res. D 92, 2071–2081 (1987).

G. W. Sachse, Atmospheric Science Division, NASA Langley Research Center, Hampton, Va. (personal communication, 1996).

Schiff, H. I.

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. D 95, 10147–10153 (1990).

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994).

Schmidt, U.

B. Arlander, D. Brüning, U. Schmidt, D. H. Ehhalt, “The tropospheric distribution of formaldehyde during TROPOZ II,” J. Atmos. Chem. 22, 257–268 (1995).

Shewchun, J.

Shipham, M. C.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Singh, H. B.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Snyder, D. G. S.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

Standholm, S. T.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Steele, L. P.

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

Torres, A. L.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Trainer, M.

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

Trapp, D.

H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

Trimble, C. A.

Volz-Thomas, A.

H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

Wade, L.

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

Wade, L. O.

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor, using a tunable diode laser absorption technique,” J. Geophys. Res. D 92, 2071–2081 (1987).

Webster, C. R.

White, J. U.

Wienhold, F.

G. W. Harris, T. Zenker, F. Wienhold, “Airborne observation of strong biogenic NOx emissions from the Namibian Savanna during SAFARI 92,” J. Geophys. Res. to be published.

Zenker, T.

G. W. Harris, T. Zenker, F. Wienhold, “Airborne observation of strong biogenic NOx emissions from the Namibian Savanna during SAFARI 92,” J. Geophys. Res. to be published.

H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

T. Zenker, “Absorptionsspektroskopische Messungen troposphärischer Spurengase in der bodennahen Grenzschicht über dem Atlantik,” Ph.D. dissertation (University Mainz, Mainz, Germany, 1990), Chap. 3.4.3, pp. 96–101.

Zitzelsberger, R.

H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

Appl. Opt.

Appl. Phys. B

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers: comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).

J. Atmos. Chem.

B. Arlander, D. Brüning, U. Schmidt, D. H. Ehhalt, “The tropospheric distribution of formaldehyde during TROPOZ II,” J. Atmos. Chem. 22, 257–268 (1995).

J. Roths, G. W. Harris, “The tropospheric distribution of carbon monoxide as observed during the TROPOZ II experiment,” J. Atmos. Chem. 24, 157–188 (1996).

J. Geophys. Res. D

G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor, using a tunable diode laser absorption technique,” J. Geophys. Res. D 92, 2071–2081 (1987).

R. C. Harriss, G. W. Sachse, G. F. Hill, L. Wade, K. B. Bartlett, J. E. Collins, L. P. Steele, P. C. Novelli, “Carbon monoxide and methane in the North American Arctic and Subarctic troposphere: July–August 1988,” J. Geophys. Res. D 97, 16589–16599 (1992).

H. I. Schiff, D. R. Karecki, G. W. Harris, D. R. Hastie, G. I. Mackay, “A tunable diode laser system for aircraft measurements of trace gases,” J. Geophys. Res. D 95, 10147–10153 (1990).

M. A. Carroll, D. R. Hastie, B. A. Ridley, M. O. Rodgers, A. L. Torres, D. D. Davis, J. D. Bradshaw, S. T. Standholm, H. I. Schiff, D. R. Karecki, G. W. Harris, G. I. Mackay, G. L. Gregory, E. P. Condon, M. Trainer, G. Hubler, D. D. Montzka, S. Madronich, D. L. Albritton, H. B. Singh, S. M. Beck, M. C. Shipham, A. S. Bachmeier, “Aircraft measurements of NOx over the Eastern Pacific and continental United States and implications for ozone production,” J. Geophys. Res. D 95, 10205–10233 (1990).

C. R. Webster, R. D. May, “Simultaneous in-situ measurements and diurnal variations of NO, NO2, O3, j(NO2), CH4, H2O, and CO2 in the 40- to 26-km region using an open path tunable diode laser spectrometer,” J. Geophys. Res. D 10, 11931–11950 (1987).

J. Mol. Spectrosc.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, P. D. Palash, J.-M. Flaud, C. Camy-Peyret, K. Narahari Rao, “Tunable diode laser spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179–195 (1982).

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Other

W. Demtröder, Laser Spectroscopy (Springer-Verlag, Berlin, 1982).

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. (Wiley, New York, 1994).

G. W. Harris, T. Zenker, F. Wienhold, “Airborne observation of strong biogenic NOx emissions from the Namibian Savanna during SAFARI 92,” J. Geophys. Res. to be published.

H. Fischer, R. Zitzelsberger, T. Zenker, J. Roths, D. Trapp, H. Harder, A. Volz-Thomas, G. W. Harris, “Development and application of multi-laser TDLAS instruments for groundbased, shipboard, and airborne measurements in the troposphere: field intercomparisons with other methods for CO, HCHO, and NO2,” in Proceedings of the Eurotrac ’96 Symposium, P. M. Borrell, P. Borell, T. Cvitas, K. Kelly, W. Seiler, eds. (Computational Mechanics, Southampton, U.K., 1996).

A. Marenco, I. Jonquières, H. Gouget, P. Nédélec, “Experimental determinations of meridional distribution and long term evolution of tropospheric ozone—consequences on radiative forcing,” in Atmospheric Ozone as a Climate Gas, W.-C. Wang, I. S. A. Isaksen, eds., Vol. 132 of NATO ASI Series (Springer-Verlag, Berlin, 1995), pp. 305–319.

G. W. Sachse, Atmospheric Science Division, NASA Langley Research Center, Hampton, Va. (personal communication, 1996).

B. Arlander, IVL Institutet för Vattenoch Luftvardsforskning, Swedish Environmental Research Institute, S-40258 Göteborg, Sweden (personal communication, 1992).

T. Zenker, “Absorptionsspektroskopische Messungen troposphärischer Spurengase in der bodennahen Grenzschicht über dem Atlantik,” Ph.D. dissertation (University Mainz, Mainz, Germany, 1990), Chap. 3.4.3, pp. 96–101.

A. Marenco, Laboratoire d’Aérologie, CNRS, 31400 Toulouse, France (personal communication, 1992).

J. Roths, “Entwicklung eines flugtauglichen, laserspektroskopischen Spurengassensors und dessen Einsatz bei der TROPOZ-II-Flugmesskampagne,” Ph.D. dissertation (University Mainz, Mainz, Germany, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of the optical setup. D1–D4, liquid-nitrogen Dewar with installed diode lasers; OAP, off-axis parabolic mirrors; LM, lifting mirrors; MRC, multiple reflection cell; SD, signal detector; BS, beam splitter; IF, intermediate focus; RC, reference cell; RD, reference detector; CH, chopper; HeNe, He–Ne laser; CU, coupling unit for He–Ne beam; SM, spherical mirror; P, pump.

Fig. 2
Fig. 2

End flange of the multiple reflection cell with field mirror and corner mirrors: a), front view, b), side view, c), top view. M(A) and M(B) are the centers of the opposed pair of spherical mirrors. The focus point of the incoming beam is indicated by 0, and the focus points on the field mirror are numbered according to their position in the beam path. The outgoing beam passes through a separate window behind focus point #63. The base length of the mirror system is 1 m, resulting in a total path length of 126 m.

Fig. 3
Fig. 3

Block diagram of the FLAIR spectrometer. LCU, laser control unit; SD, signal detector; RD, reference detector; P, pressure gauge; ADC, analog-to-digital converter; DAC, digital-to-analog converter; CH, chopper.

Fig. 4
Fig. 4

Timing diagram. E1–E5 denote the input channels of the microprocessor control unit and A1 is an output channel (see Fig. 3). The repetition time of 70 ms is given by the rotation period of the chopper. The trigger signal generated by the chopper is shown on the upper trace. During one rotation, the chopper blocks the infrared beam for 5 ms, resulting in a decrease in optical power incident on the detector as shown in trace E2. The signals on E5, which are generated by the pulse generator, are used to trigger the microprocessor to read the total laser power. The trigger signal on E4 starts the ramp waveform generated by the DAC to sweep the laser across the absorption line. The detected 2f signal is shown on trace E1, whereas the zero crossing of the 1f signal is indicated by a transistor-transistor logic pulse on trace E3.

Fig. 5
Fig. 5

Schematic of the gas flow and calibration system. FM, flow meter; FC, flow controler; V, valve, NV, needle valve; sccm, standard cubic centimeters per minute; slm, standard liter per minute.

Fig. 6
Fig. 6

Permeation rate of the HCHO source measured during the TROPOZ II campaign by the DNPH and HPLC technique.20,21 The solid line indicates the mean value and the dashed lines give the 1σ interval.

Fig. 7
Fig. 7

Weight-loss determinations of the NO2 permeation tube with four different high-precision balancies (a–d). An offset is added to each measurement series so as to have a clearer representation. The measurements from all balances agree well with each other. The permeation rate, determined by all measurement series, is 26.3 ± 0.18 ng/min.

Fig. 8
Fig. 8

Temporal behavior of the H2O2 permeation rate. The time interval of the TROPOZ II campaign is indicated. The solid curve represents the best fit of an exponential function to the measured values.

Fig. 9
Fig. 9

Typical 2f absorption signals (filled boxes) observed during the TROPOZ II campaign for a) carbon monoxide (21.2 °N, 62.4 °W, 8.21-km altitude); b) formaldehyde (31.4 °N, 64.2 °W, 5.44-km altitude); c) nitrogen dioxide (29.0 °N, 15.1 °W, 6.19-km altitude); and d) hydrogen peroxide (20.8 °S, 41.9 °W, 8.73-km altitude). The solid curves are the fits of the calibration signals (plus a second-order polynomial for background approximation) to the data points.

Fig. 10
Fig. 10

Variation of the instrument calibration factor during one flight. The relative amplitudes of the CO absorption of a secondary calibration standard (N2 zero gas) is shown as a function of time. The drift in the instrument calibration factor can be addressed by the application of a time-dependent calibration factor, which is given by the polygon line.

Fig. 11
Fig. 11

Laboratory investigations that show the performance of the FLAIR spectrometer in the vicinity of the detection limits a) for the NO2 channel and b) for the HCHO channel. During the first five measurements, calibration gas was introduced into the measurement cell before it was switched off, and pure nitrogen gas remained in the cell (zero measurements). The data-processing software handled all measurements as ambient air measurements. The variation in the zero measurements can be used to characterize the performance of the instrument when it is operating close to the detection limits.

Fig. 12
Fig. 12

Airborne intercomparison of carbon monoxide and formaldehyde measurements made with the FLAIR spectrometer during the TROPOZ II campaign. Carbon monoxide is compared with gas chromatography measurements (GC) and formaldehyde is compared with a DNPH technique. The solid lines are least-squares fits (y = a + bx) to the data points, and the dashed lines give the y = x identity for reference. The statistics describing the regression lines are given in Table 3. TDL, tunable diode laser.

Tables (3)

Tables Icon

Table 1 Positions of Absorption Lines Used during the TROPOZ II Campaign with the FLAIR Spectrometer

Tables Icon

Table 2 Detection Limits of the FLAIR Spectrometera

Tables Icon

Table 3 Parameters of the Regression Lines Shown in Figs. 12(a) and 12(b)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f ( ν ) = S cal ( ν ) p 1 + p 2 + p 3 ν + p 4 ν 2 .
x min = x SNR = 1 .
σ = 1 n - 1 ( i = 1 n { S amb ( υ i ) - [ S cal ( υ i ) p 1 + P 2 + p 3 υ i + p 4 υ i 2 ] } 2 ) 1 / 2 ,

Metrics