Abstract

A new method to detect molecular ions selectively in gas discharges by Fourier transform emission spectroscopy is proposed. This method is by dual-beam optical subtraction. The difference spectrum between blue and red Doppler-shifted components is obtained directly thus eliminating the large background that is due to neutral precursors.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Carrington, B. A. Thrush, eds., The Spectroscopy of Molecular Ions (The Royal Society, London, 1987).
  2. P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrochim. Acta A 51, 1117–1125 (1995).
  3. H. Solka, W. Zimmerman, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection of molecular ions,” Appl. Phys. B 48, 235–242 (1989).
  4. R. C. Woods, T. A. Dixon, R. J. Saykally, P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).
  5. N. N. Haese, F. S. Pan, T. Oka, “Doppler shift and ion mobility measurements of ArH+ in a DC glow discharge,” Phys. Rev. Lett. 50, 1575–1578 (1983).
  6. C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).
  7. G. Guelachvili, “Differential Fourier spectroscopy with simultaneous interferograms: application to extensive accurate pressure-shift measurements,” Appl. Opt. 20, 2121–2132 (1981).
  8. P. A. Martin, G. Guelachvili, “Velocity modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).
  9. W. Y. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).
  10. P. R. Griffiths, J. A. de Haseth, Fourier Transform Spectrometry (Wiley, New York, 1986).
  11. H. R. Chandrasekhar, L. Genzel, J. Kuhl, “Double-beam Fourier spectroscopy with interferometric background compensation,” Opt. Commun. 17, 106–110 (1976).
  12. J. Connes, P. Connes, “Near infrared planetary spectra by Fourier spectroscopy. I. Instruments and results,” J. Opt. Soc. Am 56, 896–910 (1966).
  13. J. P. Maillard, “Spectroscopie par transformation de Fourier dans le proche infrarouge appliqueée a l’astronomie,” Ph.D. dissertation (Universiteé de Paris, Orsay, 1967).
  14. J. P. Maillard, G. Michel, “A high resolution Fourier transform spectrometer for the Cassegrain focus at the CFH telescope,” in Instrumentation for Astronomy with Large Optical Telescopes, C. M. Humphries, ed. (D. Reidel, Dordrecht, The Netherlands, 1982), pp. 213–222.
  15. S. C. Shen, T. Welker, J. Juhl, L. Genzel, “The performance of a double beam Fourier transform spectrometer and its application to the measurement of weak IR absorption,” Infrared Phys. 20, 277–286 (1980).
  16. L. Genzel, J. Kuhl, “A new version of a Michelson interferometer for Fourier transform infrared spectroscopy,” Infrared Phys. 18, 113–120 (1978).

1995 (1)

P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrochim. Acta A 51, 1117–1125 (1995).

1994 (1)

W. Y. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).

1990 (1)

P. A. Martin, G. Guelachvili, “Velocity modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).

1989 (1)

H. Solka, W. Zimmerman, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection of molecular ions,” Appl. Phys. B 48, 235–242 (1989).

1983 (2)

N. N. Haese, F. S. Pan, T. Oka, “Doppler shift and ion mobility measurements of ArH+ in a DC glow discharge,” Phys. Rev. Lett. 50, 1575–1578 (1983).

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).

1981 (1)

1980 (1)

S. C. Shen, T. Welker, J. Juhl, L. Genzel, “The performance of a double beam Fourier transform spectrometer and its application to the measurement of weak IR absorption,” Infrared Phys. 20, 277–286 (1980).

1978 (1)

L. Genzel, J. Kuhl, “A new version of a Michelson interferometer for Fourier transform infrared spectroscopy,” Infrared Phys. 18, 113–120 (1978).

1976 (1)

H. R. Chandrasekhar, L. Genzel, J. Kuhl, “Double-beam Fourier spectroscopy with interferometric background compensation,” Opt. Commun. 17, 106–110 (1976).

1975 (1)

R. C. Woods, T. A. Dixon, R. J. Saykally, P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).

1966 (1)

J. Connes, P. Connes, “Near infrared planetary spectra by Fourier spectroscopy. I. Instruments and results,” J. Opt. Soc. Am 56, 896–910 (1966).

Begeman, M. H.

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).

Chandrasekhar, H. R.

H. R. Chandrasekhar, L. Genzel, J. Kuhl, “Double-beam Fourier spectroscopy with interferometric background compensation,” Opt. Commun. 17, 106–110 (1976).

Connes, J.

J. Connes, P. Connes, “Near infrared planetary spectra by Fourier spectroscopy. I. Instruments and results,” J. Opt. Soc. Am 56, 896–910 (1966).

Connes, P.

J. Connes, P. Connes, “Near infrared planetary spectra by Fourier spectroscopy. I. Instruments and results,” J. Opt. Soc. Am 56, 896–910 (1966).

Dax, A.

H. Solka, W. Zimmerman, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection of molecular ions,” Appl. Phys. B 48, 235–242 (1989).

de Haseth, J. A.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Spectrometry (Wiley, New York, 1986).

Dixon, T. A.

R. C. Woods, T. A. Dixon, R. J. Saykally, P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).

Genzel, L.

S. C. Shen, T. Welker, J. Juhl, L. Genzel, “The performance of a double beam Fourier transform spectrometer and its application to the measurement of weak IR absorption,” Infrared Phys. 20, 277–286 (1980).

L. Genzel, J. Kuhl, “A new version of a Michelson interferometer for Fourier transform infrared spectroscopy,” Infrared Phys. 18, 113–120 (1978).

H. R. Chandrasekhar, L. Genzel, J. Kuhl, “Double-beam Fourier spectroscopy with interferometric background compensation,” Opt. Commun. 17, 106–110 (1976).

Griffiths, P. R.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Spectrometry (Wiley, New York, 1986).

Gudeman, C. S.

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).

Guelachvili, G.

P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrochim. Acta A 51, 1117–1125 (1995).

P. A. Martin, G. Guelachvili, “Velocity modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).

G. Guelachvili, “Differential Fourier spectroscopy with simultaneous interferograms: application to extensive accurate pressure-shift measurements,” Appl. Opt. 20, 2121–2132 (1981).

Haese, N. N.

N. N. Haese, F. S. Pan, T. Oka, “Doppler shift and ion mobility measurements of ArH+ in a DC glow discharge,” Phys. Rev. Lett. 50, 1575–1578 (1983).

Hong, W. Y.

W. Y. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).

Juhl, J.

S. C. Shen, T. Welker, J. Juhl, L. Genzel, “The performance of a double beam Fourier transform spectrometer and its application to the measurement of weak IR absorption,” Infrared Phys. 20, 277–286 (1980).

Kuhl, J.

L. Genzel, J. Kuhl, “A new version of a Michelson interferometer for Fourier transform infrared spectroscopy,” Infrared Phys. 18, 113–120 (1978).

H. R. Chandrasekhar, L. Genzel, J. Kuhl, “Double-beam Fourier spectroscopy with interferometric background compensation,” Opt. Commun. 17, 106–110 (1976).

Maillard, J. P.

J. P. Maillard, “Spectroscopie par transformation de Fourier dans le proche infrarouge appliqueée a l’astronomie,” Ph.D. dissertation (Universiteé de Paris, Orsay, 1967).

J. P. Maillard, G. Michel, “A high resolution Fourier transform spectrometer for the Cassegrain focus at the CFH telescope,” in Instrumentation for Astronomy with Large Optical Telescopes, C. M. Humphries, ed. (D. Reidel, Dordrecht, The Netherlands, 1982), pp. 213–222.

Martin, P. A.

P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrochim. Acta A 51, 1117–1125 (1995).

P. A. Martin, G. Guelachvili, “Velocity modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).

Michel, G.

J. P. Maillard, G. Michel, “A high resolution Fourier transform spectrometer for the Cassegrain focus at the CFH telescope,” in Instrumentation for Astronomy with Large Optical Telescopes, C. M. Humphries, ed. (D. Reidel, Dordrecht, The Netherlands, 1982), pp. 213–222.

Miller, T. A.

W. Y. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).

Oka, T.

N. N. Haese, F. S. Pan, T. Oka, “Doppler shift and ion mobility measurements of ArH+ in a DC glow discharge,” Phys. Rev. Lett. 50, 1575–1578 (1983).

Pan, F. S.

N. N. Haese, F. S. Pan, T. Oka, “Doppler shift and ion mobility measurements of ArH+ in a DC glow discharge,” Phys. Rev. Lett. 50, 1575–1578 (1983).

Pfaff, J.

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).

Reinert, D.

H. Solka, W. Zimmerman, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection of molecular ions,” Appl. Phys. B 48, 235–242 (1989).

Saykally, R. J.

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).

R. C. Woods, T. A. Dixon, R. J. Saykally, P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).

Shen, S. C.

S. C. Shen, T. Welker, J. Juhl, L. Genzel, “The performance of a double beam Fourier transform spectrometer and its application to the measurement of weak IR absorption,” Infrared Phys. 20, 277–286 (1980).

Solka, H.

H. Solka, W. Zimmerman, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection of molecular ions,” Appl. Phys. B 48, 235–242 (1989).

Stahn, A.

H. Solka, W. Zimmerman, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection of molecular ions,” Appl. Phys. B 48, 235–242 (1989).

Szanto, P. G.

R. C. Woods, T. A. Dixon, R. J. Saykally, P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).

Urban, W.

H. Solka, W. Zimmerman, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection of molecular ions,” Appl. Phys. B 48, 235–242 (1989).

Welker, T.

S. C. Shen, T. Welker, J. Juhl, L. Genzel, “The performance of a double beam Fourier transform spectrometer and its application to the measurement of weak IR absorption,” Infrared Phys. 20, 277–286 (1980).

Woods, R. C.

R. C. Woods, T. A. Dixon, R. J. Saykally, P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).

Zimmerman, W.

H. Solka, W. Zimmerman, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection of molecular ions,” Appl. Phys. B 48, 235–242 (1989).

Appl. Opt. (1)

Appl. Phys. B (1)

H. Solka, W. Zimmerman, D. Reinert, A. Stahn, A. Dax, W. Urban, “A simple model for the velocity modulation detection of molecular ions,” Appl. Phys. B 48, 235–242 (1989).

Infrared Phys. (2)

S. C. Shen, T. Welker, J. Juhl, L. Genzel, “The performance of a double beam Fourier transform spectrometer and its application to the measurement of weak IR absorption,” Infrared Phys. 20, 277–286 (1980).

L. Genzel, J. Kuhl, “A new version of a Michelson interferometer for Fourier transform infrared spectroscopy,” Infrared Phys. 18, 113–120 (1978).

J. Chem. Phys. (1)

W. Y. Hong, T. A. Miller, “Velocity modulated Fourier transform emission as a plasma diagnostic and a spectroscopic tool,” J. Chem. Phys. 101, 4572–4577 (1994).

J. Opt. Soc. Am (1)

J. Connes, P. Connes, “Near infrared planetary spectra by Fourier spectroscopy. I. Instruments and results,” J. Opt. Soc. Am 56, 896–910 (1966).

Opt. Commun. (1)

H. R. Chandrasekhar, L. Genzel, J. Kuhl, “Double-beam Fourier spectroscopy with interferometric background compensation,” Opt. Commun. 17, 106–110 (1976).

Phys. Rev. Lett. (4)

R. C. Woods, T. A. Dixon, R. J. Saykally, P. G. Szanto, “Laboratory microwave spectrum of HCO+,” Phys. Rev. Lett. 35, 1269–1272 (1975).

N. N. Haese, F. S. Pan, T. Oka, “Doppler shift and ion mobility measurements of ArH+ in a DC glow discharge,” Phys. Rev. Lett. 50, 1575–1578 (1983).

C. S. Gudeman, M. H. Begeman, J. Pfaff, R. J. Saykally, “Velocity modulated infrared laser spectroscopy of molecular ions: the ν1 band of HCO+,” Phys. Rev. Lett. 50, 727–731 (1983).

P. A. Martin, G. Guelachvili, “Velocity modulation Fourier transform spectroscopy of molecular ions,” Phys. Rev. Lett. 65, 2535–2538 (1990).

Spectrochim. Acta A (1)

P. A. Martin, G. Guelachvili, “Modulation and selective detection of transient species in high resolution FTS,” Spectrochim. Acta A 51, 1117–1125 (1995).

Other (4)

A. Carrington, B. A. Thrush, eds., The Spectroscopy of Molecular Ions (The Royal Society, London, 1987).

J. P. Maillard, “Spectroscopie par transformation de Fourier dans le proche infrarouge appliqueée a l’astronomie,” Ph.D. dissertation (Universiteé de Paris, Orsay, 1967).

J. P. Maillard, G. Michel, “A high resolution Fourier transform spectrometer for the Cassegrain focus at the CFH telescope,” in Instrumentation for Astronomy with Large Optical Telescopes, C. M. Humphries, ed. (D. Reidel, Dordrecht, The Netherlands, 1982), pp. 213–222.

P. R. Griffiths, J. A. de Haseth, Fourier Transform Spectrometry (Wiley, New York, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Schematic optical arrangement of the dual-beam optical subtraction method for selective detection of molecular ions with the use of a symmetric dc glow discharge as a double source.

Fig. 2
Fig. 2

Summary of the dual-beam method. P is the spectral density of the source and the subscript M refers to the modulated part of the interferogram.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 1 ( σ ) = I B ( σ ) + B ( σ ) ,             P 2 ( σ ) = I R ( σ ) + B ( σ ) .
I 11 ( x ) = ½ P 1 ( σ ) ( 1 + cos 2 π σ x ) d σ             detector 1 , I 12 ( x ) = ½ P 1 ( σ ) ( 1 + cos 2 π σ x ) d σ             detector 2 ,
I 21 ( x ) = ½ P 2 ( σ ) ( 1 - cos 2 π σ x ) d σ             detector 1 , I 22 ( x ) = ½ P 2 ( σ ) ( 1 + cos 2 π σ x ) d σ             detector 2.
I 11 ( x ) + I 21 ( x ) = ½ [ I B ( σ ) + B ( σ ) ] ( 1 + cos 2 π σ x ) d σ + ½ [ I R ( σ ) + B ( σ ) ] × ( 1 - cos 2 π σ x ) d σ             detector 1 , I 12 ( x ) + I 22 ( x ) = ½ [ I B ( σ ) + B ( σ ) ] ( 1 + cos 2 π σ x ) d σ + ½ [ I R ( σ ) + B ( σ ) ] × ( 1 - cos 2 π σ x ) d σ             detector 2
½ [ I B ( σ ) + I R ( σ ) + 2 B ( σ ) ] d σ + ½ [ I B ( σ ) - I R ( σ ) ] cos 2 π σ x ) d σ             detector 1 , ½ [ I B ( σ ) + I R ( σ ) + 2 B ( σ ) ] d σ - ½ [ I B ( σ ) - I R ( σ ) ] cos 2 π σ x ) d σ             detector 2.

Metrics