Abstract

By using x-ray diffraction and optical waveguide characterization, it has been shown that proton-exchanged layers on Z-cut LiNbO3 can have as many as seven different crystallographic phases that are stable at room temperature. This study allows us to establish some correlation between fabrication parameters and the crystalline structure, the index profiles, and the propagation losses of waveguides prepared by this process.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high δn waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).
  2. C. E. Rice, J. L. Jackel, “Structural changes with composition and temperature in rhombohedral HxLi1−xNbO3,” Mater. Res. Bull. 19, 591–597 (1984).
  3. C. E. Rice, “The structure and properties of HxLi1−xNbO3,” J. Solid State Chem. 64, 188–199 (1986).
  4. V. A. Fedorov, Yu. N. Korkishko, “Crystal structure and optical properties of proton-exchanged LiTaO3 waveguides,” Ferroelectrics 160, 185–208 (1994).
  5. V. A. Fedorov, Yu. N. Korkishko, “Crystal structure and optical properties of proton-exchanged lithium niobate waveguides,” in Integrated Optics and Microstructures II, M. Tabib-Azar, D. L. Polla, K.-K. Wong, eds., Proc. SPIE 2291, 243–255 (1994).
  6. V. A. Fedorov, Yu. N. Korkishko, “Relationships between crystal lattice parameters and optical properties of proton-exchanged lithium niobate waveguides,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE 2401, 216–226 (1995).
  7. J. M. White, P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of modes indices: a simple analysis,” Appl. Opt. 15, 151–155 (1976).
  8. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).
  9. V. A. Fedorov, V. A. Ganshin, Yu. N. Korkishko, “New method of double-crystal x-ray diffractometric determination of the strained state in surface-layer structure,” Phys. Status Solidi A 135, 493–506 (1993).
  10. S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).
  11. M. J. Li, M. P. De Micheli, D. B. Ostrowsky, M. Papuchon, “High index low loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).
  12. K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, “Control of proton exchange for LiTaO3 waveguides and crystal structure of HxLi1−xTaO3,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 363.
  13. M. L. Bortz, M. M. Fejer, “Measurement of the secondorder nonlinear susceptibility of proton-exchanged LiNbO3,” Opt. Lett. 17, 704–706 (1992).
  14. Yu. N. Korkishko, V. A. Fedorov, S. V. Katin, A. V. Kondrat’ev, “Reverse exchange in the annealed proton exchanged LiNbO3 structures for buried waveguides,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 395.
  15. P. Baldi, S. Nouh, K. El Hadi, M. De Micheli, D. B. Ostrowsky, D. Delacourt, M. Papuchon, “Quasi-phase-matched parametric fluorescence in room temperature lithium tantalate waveguides,” Opt. Lett. 20, 1471–1473 (1995).

1995 (1)

1994 (2)

V. A. Fedorov, Yu. N. Korkishko, “Crystal structure and optical properties of proton-exchanged LiTaO3 waveguides,” Ferroelectrics 160, 185–208 (1994).

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).

1993 (1)

V. A. Fedorov, V. A. Ganshin, Yu. N. Korkishko, “New method of double-crystal x-ray diffractometric determination of the strained state in surface-layer structure,” Phys. Status Solidi A 135, 493–506 (1993).

1992 (1)

1987 (1)

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, M. Papuchon, “High index low loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).

1986 (1)

C. E. Rice, “The structure and properties of HxLi1−xNbO3,” J. Solid State Chem. 64, 188–199 (1986).

1985 (1)

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).

1984 (1)

C. E. Rice, J. L. Jackel, “Structural changes with composition and temperature in rhombohedral HxLi1−xNbO3,” Mater. Res. Bull. 19, 591–597 (1984).

1982 (1)

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high δn waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).

1976 (1)

Baldi, P.

P. Baldi, S. Nouh, K. El Hadi, M. De Micheli, D. B. Ostrowsky, D. Delacourt, M. Papuchon, “Quasi-phase-matched parametric fluorescence in room temperature lithium tantalate waveguides,” Opt. Lett. 20, 1471–1473 (1995).

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).

K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, “Control of proton exchange for LiTaO3 waveguides and crystal structure of HxLi1−xTaO3,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 363.

Bassi, P.

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).

Bortz, M. L.

Chen, S.

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).

Chiang, K. S.

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).

De Micheli, M.

De Micheli, M. P.

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, M. Papuchon, “High index low loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).

K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, “Control of proton exchange for LiTaO3 waveguides and crystal structure of HxLi1−xTaO3,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 363.

Delacourt, D.

El Hadi, K.

P. Baldi, S. Nouh, K. El Hadi, M. De Micheli, D. B. Ostrowsky, D. Delacourt, M. Papuchon, “Quasi-phase-matched parametric fluorescence in room temperature lithium tantalate waveguides,” Opt. Lett. 20, 1471–1473 (1995).

K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, “Control of proton exchange for LiTaO3 waveguides and crystal structure of HxLi1−xTaO3,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 363.

Fedorov, V. A.

V. A. Fedorov, Yu. N. Korkishko, “Crystal structure and optical properties of proton-exchanged LiTaO3 waveguides,” Ferroelectrics 160, 185–208 (1994).

V. A. Fedorov, V. A. Ganshin, Yu. N. Korkishko, “New method of double-crystal x-ray diffractometric determination of the strained state in surface-layer structure,” Phys. Status Solidi A 135, 493–506 (1993).

V. A. Fedorov, Yu. N. Korkishko, “Relationships between crystal lattice parameters and optical properties of proton-exchanged lithium niobate waveguides,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE 2401, 216–226 (1995).

V. A. Fedorov, Yu. N. Korkishko, “Crystal structure and optical properties of proton-exchanged lithium niobate waveguides,” in Integrated Optics and Microstructures II, M. Tabib-Azar, D. L. Polla, K.-K. Wong, eds., Proc. SPIE 2291, 243–255 (1994).

Yu. N. Korkishko, V. A. Fedorov, S. V. Katin, A. V. Kondrat’ev, “Reverse exchange in the annealed proton exchanged LiNbO3 structures for buried waveguides,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 395.

Fejer, M. M.

Ganshin, V. A.

V. A. Fedorov, V. A. Ganshin, Yu. N. Korkishko, “New method of double-crystal x-ray diffractometric determination of the strained state in surface-layer structure,” Phys. Status Solidi A 135, 493–506 (1993).

Heidrich, P. F.

Jackel, J. L.

C. E. Rice, J. L. Jackel, “Structural changes with composition and temperature in rhombohedral HxLi1−xNbO3,” Mater. Res. Bull. 19, 591–597 (1984).

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high δn waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).

Katin, S. V.

Yu. N. Korkishko, V. A. Fedorov, S. V. Katin, A. V. Kondrat’ev, “Reverse exchange in the annealed proton exchanged LiNbO3 structures for buried waveguides,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 395.

Kondrat’ev, A. V.

Yu. N. Korkishko, V. A. Fedorov, S. V. Katin, A. V. Kondrat’ev, “Reverse exchange in the annealed proton exchanged LiNbO3 structures for buried waveguides,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 395.

Korkishko, Yu. N.

V. A. Fedorov, Yu. N. Korkishko, “Crystal structure and optical properties of proton-exchanged LiTaO3 waveguides,” Ferroelectrics 160, 185–208 (1994).

V. A. Fedorov, V. A. Ganshin, Yu. N. Korkishko, “New method of double-crystal x-ray diffractometric determination of the strained state in surface-layer structure,” Phys. Status Solidi A 135, 493–506 (1993).

V. A. Fedorov, Yu. N. Korkishko, “Relationships between crystal lattice parameters and optical properties of proton-exchanged lithium niobate waveguides,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE 2401, 216–226 (1995).

V. A. Fedorov, Yu. N. Korkishko, “Crystal structure and optical properties of proton-exchanged lithium niobate waveguides,” in Integrated Optics and Microstructures II, M. Tabib-Azar, D. L. Polla, K.-K. Wong, eds., Proc. SPIE 2291, 243–255 (1994).

Yu. N. Korkishko, V. A. Fedorov, S. V. Katin, A. V. Kondrat’ev, “Reverse exchange in the annealed proton exchanged LiNbO3 structures for buried waveguides,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 395.

Leycuras, A.

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).

K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, “Control of proton exchange for LiTaO3 waveguides and crystal structure of HxLi1−xTaO3,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 363.

Li, M. J.

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, M. Papuchon, “High index low loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).

Nouh, S.

P. Baldi, S. Nouh, K. El Hadi, M. De Micheli, D. B. Ostrowsky, D. Delacourt, M. Papuchon, “Quasi-phase-matched parametric fluorescence in room temperature lithium tantalate waveguides,” Opt. Lett. 20, 1471–1473 (1995).

K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, “Control of proton exchange for LiTaO3 waveguides and crystal structure of HxLi1−xTaO3,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 363.

Ostrowsky, D. B.

P. Baldi, S. Nouh, K. El Hadi, M. De Micheli, D. B. Ostrowsky, D. Delacourt, M. Papuchon, “Quasi-phase-matched parametric fluorescence in room temperature lithium tantalate waveguides,” Opt. Lett. 20, 1471–1473 (1995).

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, M. Papuchon, “High index low loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).

Papuchon, M.

Rice, C. E.

C. E. Rice, “The structure and properties of HxLi1−xNbO3,” J. Solid State Chem. 64, 188–199 (1986).

C. E. Rice, J. L. Jackel, “Structural changes with composition and temperature in rhombohedral HxLi1−xNbO3,” Mater. Res. Bull. 19, 591–597 (1984).

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high δn waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).

Tartarini, G.

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).

Veselka, J. J.

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high δn waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).

White, J. M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. L. Jackel, C. E. Rice, J. J. Veselka, “Proton exchange for high δn waveguides in LiNbO3,” Appl. Phys. Lett. 41, 607–609 (1982).

Ferroelectrics (1)

V. A. Fedorov, Yu. N. Korkishko, “Crystal structure and optical properties of proton-exchanged LiTaO3 waveguides,” Ferroelectrics 160, 185–208 (1994).

J. Lightwave Technol. (2)

S. Chen, P. Baldi, M. P. De Micheli, D. B. Ostrowsky, A. Leycuras, G. Tartarini, P. Bassi, “Hybrid modes in proton exchanged waveguides realized in LiNbO3, and their dependence on fabrication parameters,” J. Lightwave Technol. 12, 862–871 (1994).

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. LT-3, 385–391 (1985).

J. Solid State Chem. (1)

C. E. Rice, “The structure and properties of HxLi1−xNbO3,” J. Solid State Chem. 64, 188–199 (1986).

Mater. Res. Bull. (1)

C. E. Rice, J. L. Jackel, “Structural changes with composition and temperature in rhombohedral HxLi1−xNbO3,” Mater. Res. Bull. 19, 591–597 (1984).

Opt. Commun. (1)

M. J. Li, M. P. De Micheli, D. B. Ostrowsky, M. Papuchon, “High index low loss LiNbO3 waveguides,” Opt. Commun. 62, 17–20 (1987).

Opt. Lett. (2)

Phys. Status Solidi A (1)

V. A. Fedorov, V. A. Ganshin, Yu. N. Korkishko, “New method of double-crystal x-ray diffractometric determination of the strained state in surface-layer structure,” Phys. Status Solidi A 135, 493–506 (1993).

Other (4)

K. El Hadi, P. Baldi, S. Nouh, M. P. De Micheli, A. Leycuras, “Control of proton exchange for LiTaO3 waveguides and crystal structure of HxLi1−xTaO3,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 363.

Yu. N. Korkishko, V. A. Fedorov, S. V. Katin, A. V. Kondrat’ev, “Reverse exchange in the annealed proton exchanged LiNbO3 structures for buried waveguides,” in Proceedings of the European Conference on Integrated Optics, L. Shi, ed. (Delft University Press, The Netherlands, 1995), p. 395.

V. A. Fedorov, Yu. N. Korkishko, “Crystal structure and optical properties of proton-exchanged lithium niobate waveguides,” in Integrated Optics and Microstructures II, M. Tabib-Azar, D. L. Polla, K.-K. Wong, eds., Proc. SPIE 2291, 243–255 (1994).

V. A. Fedorov, Yu. N. Korkishko, “Relationships between crystal lattice parameters and optical properties of proton-exchanged lithium niobate waveguides,” in Functional Photonic Integrated Circuits, M. N. Armenise, K.-K. Wong, eds., Proc. SPIE 2401, 216–226 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Typical rocking curves of layers prepared under conditions that allowed us to fabricate all the different H x Li1− x NbO3 phases identified in this paper. Some of these phases can be obtained with different fabrication parameters, but they do not influence the shape of the rocking curves: (a) PE, B.A. + 2.6% L.B.; TPE = 300 °C, tPE = 25 h; (b) PE, glycerin + KHSO4 (3 g/L); TPE = 220 °C, tPE = 25 h; annealing, T A = 330 °C, t A = 80 h; (c) PE, glycerin + KHSO4 (3 g/L); TPE = 220 °C, tPE = 25 h; annealing, T A = 330 °C; t A = 30 h; (d) PE, B.A. + 1.0% L.B.; TPE = 300 °C; tPE = 10 h; (e) PE, B.A.; TPE = 300 °C, tPE = 1 h; (f) PE, glycerin + KHSO4 (10 g/L); TPE = 220 °C, tPE = 25 h; (g) PE, ammonium dihydrophosphate melt; TPE = 230 °C, tPE = 3 h.

Fig. 2
Fig. 2

Relationship between the extraordinary index change δn e and the deformation ɛ33″ in PE waveguides formed on Z-cut LiNbO3: +, by direct exchange, ○, by annealing at T = 330 °C. For stratified samples, the relationship between δn e and ɛ33 was determined by measuring both the rocking curves and the index profile after each slight removal of a surface layer by polishing and assigning the surface index value to the largest value of strain.

Fig. 3
Fig. 3

Evolution with annealing and postannealing times of the a, deformations and b, refractive-index profiles of a waveguide fabricated on Z-cut LiNbO3 by proton exchange in a solution of KHSO4 in glycerin (C = 4.5 g/L, T = 215 °C, t = 12 h, annealing temperature of T = 330 °C). The rocking curves are recorded on the (00.12) planes: 1, as-exchanged waveguide; 2, after 3 min of annealing (characterization just after annealing); 3, 4 days after annealing.

Tables (1)

Tables Icon

Table 1 Formation Conditions of Different H x Li1− x NbO3 Phases by Direct Proton Exchange

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ɛ 33 = - Δ θ cot θ ,

Metrics