Abstract

We propose a scalable bit-parallel optical interconnect method for use in large-bandwidth interprocessor communications. Flexible fiber image guides are used to transmit spatially parallel optical data between a vertical-cavity surface-emitting laser array and a photodetector array. We have studied a lens-based and a fiber-image-taper-based input–output coupling scheme and have modeled power-loss mechanisms and resolution-degradation mechanisms associated with the schemes. We have also performed some experiments to confirm the operational principles of the proposed schemes and to investigate the power efficiency and imaging-resolution performance of the interconnect schemes. Our study indicates that the proposed interconnects can offer a scalable method to transmit hundreds of channels of multigigabyte per second per channel optical data in parallel.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Tewksbury, “Interconnections within microelectronics systems,” in Microelectronic System Interconnections, S. K. Tewksbury, ed. (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 3–49.
  2. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electric interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]
  3. D. H. Hartman, “Electrical limitations to optical interconnect technology,” in Workshop Notes: IEEE Workshop on Interconnects within High-Speed Digital Systems (Institute of Electrical and Electronics Engineers, New York, 1995).
  4. D. K. Lewis, “The OETC parallel fiber link project,” in Workshop Notes: IEEE Workshop on Interconnects within High-Speed Digital Systems (Institute of Electrical and Electronics Engineers, New York, 1995).
  5. Y. S. Liu, H. S. Cole, J. P. Bristow, Y. Liu, “Polymer-based optical interconnect technology: a route to low-cost optoelectronic packaging and interconnect,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE 2400, 80–88 (1995).
  6. K. Koyabu, F. Ohira, T. Yamamoto, S. Matsuo, “Novel high-density collimator module,” in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication: OFC/IOOC, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 2–3.
  7. J. M. Sasian, R. A. Novotny, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlog, “Fabrication of fiber arrays for optical computing and switching systems,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 229–230.
  8. M. J. Murdocca, T. W. Stone, “Parallel optical interconnections,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, New York, 1994), Chap. 8.
  9. R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Light-wave Technol. 10, 888–897 (1992).
    [CrossRef]
  10. R. A. Novotny, “Parallel optical data links using VCSEL’s,” in Vertical-Cavity Surface-Emitting Laser Arrays, J. L. Jewell, ed., Proc. SPIE 2147, 140–149 (1994).
  11. Y. Chugs, K. Fujiwara, Y. Hattori, Y. Matsuda, “Properties of silica glass image fiber and its application,” Optoelectronics 1, 203–216 (1986).
  12. M. Mogi, K. Yoshimura, “Development of super high density packed image guide,” in Optical Fibers in Medicine IV, A. Katzir, ed., Proc. SPIE 1067, 172–180 (1989).
  13. R. Conde, “Image quality in microendoscopy: limiting factors,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE 2084, 243–250 (1993).
  14. K. Iga, “Theory for gradient-index imaging,” Appl. Opt. 19, 1039–1043 (1980).
    [CrossRef] [PubMed]
  15. K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 227–228.
  16. W. V. Schempp, “Fiber optic imaging: an introduction,” in Proceedings of Photonics West ’95, 4–10 February 1995, San Jose, Calif., Short course note 33.
  17. R. Kingslake, Optical System Design (Academic, New York, 1983), Chap. 6.
  18. Y. Zou, “A new definition for resolution of imaging fiber bundles at static scanning,” Optik 94, 43–47 (1993).
  19. N. S. Kapany, Fiber Optics, Principles and Applications (Academic, New York, 1967), Chap. 3.
  20. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), Chap. 11.
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 6.

1993 (1)

Y. Zou, “A new definition for resolution of imaging fiber bundles at static scanning,” Optik 94, 43–47 (1993).

1992 (1)

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Light-wave Technol. 10, 888–897 (1992).
[CrossRef]

1988 (1)

1986 (1)

Y. Chugs, K. Fujiwara, Y. Hattori, Y. Matsuda, “Properties of silica glass image fiber and its application,” Optoelectronics 1, 203–216 (1986).

1980 (1)

Arai, D.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 227–228.

Beckman, M. G.

J. M. Sasian, R. A. Novotny, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlog, “Fabrication of fiber arrays for optical computing and switching systems,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 229–230.

Bristow, J. P.

Y. S. Liu, H. S. Cole, J. P. Bristow, Y. Liu, “Polymer-based optical interconnect technology: a route to low-cost optoelectronic packaging and interconnect,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE 2400, 80–88 (1995).

Chen, R. T.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Light-wave Technol. 10, 888–897 (1992).
[CrossRef]

Chugs, Y.

Y. Chugs, K. Fujiwara, Y. Hattori, Y. Matsuda, “Properties of silica glass image fiber and its application,” Optoelectronics 1, 203–216 (1986).

Cole, H. S.

Y. S. Liu, H. S. Cole, J. P. Bristow, Y. Liu, “Polymer-based optical interconnect technology: a route to low-cost optoelectronic packaging and interconnect,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE 2400, 80–88 (1995).

Conde, R.

R. Conde, “Image quality in microendoscopy: limiting factors,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE 2084, 243–250 (1993).

Esener, S. C.

Feldman, M. R.

Fujiwara, K.

Y. Chugs, K. Fujiwara, Y. Hattori, Y. Matsuda, “Properties of silica glass image fiber and its application,” Optoelectronics 1, 203–216 (1986).

Gaskill, J. D.

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), Chap. 11.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 6.

Guest, C. C.

Hamanaka, K.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 227–228.

Hartman, D. H.

D. H. Hartman, “Electrical limitations to optical interconnect technology,” in Workshop Notes: IEEE Workshop on Interconnects within High-Speed Digital Systems (Institute of Electrical and Electronics Engineers, New York, 1995).

Hattori, Y.

Y. Chugs, K. Fujiwara, Y. Hattori, Y. Matsuda, “Properties of silica glass image fiber and its application,” Optoelectronics 1, 203–216 (1986).

Hinterlog, S. J.

J. M. Sasian, R. A. Novotny, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlog, “Fabrication of fiber arrays for optical computing and switching systems,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 229–230.

Iga, K.

Jannson, T.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Light-wave Technol. 10, 888–897 (1992).
[CrossRef]

Kapany, N. S.

N. S. Kapany, Fiber Optics, Principles and Applications (Academic, New York, 1967), Chap. 3.

Kingslake, R.

R. Kingslake, Optical System Design (Academic, New York, 1983), Chap. 6.

Kishimoto, T.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 227–228.

Koyabu, K.

K. Koyabu, F. Ohira, T. Yamamoto, S. Matsuo, “Novel high-density collimator module,” in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication: OFC/IOOC, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 2–3.

Kusuda, Y.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 227–228.

Lee, S. H.

Lewis, D. K.

D. K. Lewis, “The OETC parallel fiber link project,” in Workshop Notes: IEEE Workshop on Interconnects within High-Speed Digital Systems (Institute of Electrical and Electronics Engineers, New York, 1995).

Liu, Y.

Y. S. Liu, H. S. Cole, J. P. Bristow, Y. Liu, “Polymer-based optical interconnect technology: a route to low-cost optoelectronic packaging and interconnect,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE 2400, 80–88 (1995).

Liu, Y. S.

Y. S. Liu, H. S. Cole, J. P. Bristow, Y. Liu, “Polymer-based optical interconnect technology: a route to low-cost optoelectronic packaging and interconnect,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE 2400, 80–88 (1995).

Lu, H.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Light-wave Technol. 10, 888–897 (1992).
[CrossRef]

Matsuda, Y.

Y. Chugs, K. Fujiwara, Y. Hattori, Y. Matsuda, “Properties of silica glass image fiber and its application,” Optoelectronics 1, 203–216 (1986).

Matsuo, S.

K. Koyabu, F. Ohira, T. Yamamoto, S. Matsuo, “Novel high-density collimator module,” in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication: OFC/IOOC, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 2–3.

Mitsuhashi, Y.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 227–228.

Mogi, M.

M. Mogi, K. Yoshimura, “Development of super high density packed image guide,” in Optical Fibers in Medicine IV, A. Katzir, ed., Proc. SPIE 1067, 172–180 (1989).

Murdocca, M. J.

M. J. Murdocca, T. W. Stone, “Parallel optical interconnections,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, New York, 1994), Chap. 8.

Nakama, K.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 227–228.

Novotny, R. A.

R. A. Novotny, “Parallel optical data links using VCSEL’s,” in Vertical-Cavity Surface-Emitting Laser Arrays, J. L. Jewell, ed., Proc. SPIE 2147, 140–149 (1994).

J. M. Sasian, R. A. Novotny, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlog, “Fabrication of fiber arrays for optical computing and switching systems,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 229–230.

Ohira, F.

K. Koyabu, F. Ohira, T. Yamamoto, S. Matsuo, “Novel high-density collimator module,” in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication: OFC/IOOC, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 2–3.

Robinson, D.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Light-wave Technol. 10, 888–897 (1992).
[CrossRef]

Sasian, J. M.

J. M. Sasian, R. A. Novotny, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlog, “Fabrication of fiber arrays for optical computing and switching systems,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 229–230.

Savant, G.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Light-wave Technol. 10, 888–897 (1992).
[CrossRef]

Schempp, W. V.

W. V. Schempp, “Fiber optic imaging: an introduction,” in Proceedings of Photonics West ’95, 4–10 February 1995, San Jose, Calif., Short course note 33.

Stone, T. W.

M. J. Murdocca, T. W. Stone, “Parallel optical interconnections,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, New York, 1994), Chap. 8.

Tewksbury, S. K.

S. K. Tewksbury, “Interconnections within microelectronics systems,” in Microelectronic System Interconnections, S. K. Tewksbury, ed. (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 3–49.

Walker, S. L.

J. M. Sasian, R. A. Novotny, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlog, “Fabrication of fiber arrays for optical computing and switching systems,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 229–230.

Wang, M.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Light-wave Technol. 10, 888–897 (1992).
[CrossRef]

Wojcik, M. J.

J. M. Sasian, R. A. Novotny, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlog, “Fabrication of fiber arrays for optical computing and switching systems,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 229–230.

Yamamoto, T.

K. Koyabu, F. Ohira, T. Yamamoto, S. Matsuo, “Novel high-density collimator module,” in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication: OFC/IOOC, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 2–3.

Yoshimura, K.

M. Mogi, K. Yoshimura, “Development of super high density packed image guide,” in Optical Fibers in Medicine IV, A. Katzir, ed., Proc. SPIE 1067, 172–180 (1989).

Zou, Y.

Y. Zou, “A new definition for resolution of imaging fiber bundles at static scanning,” Optik 94, 43–47 (1993).

Appl. Opt. (2)

J. Light-wave Technol. (1)

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Jannson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Light-wave Technol. 10, 888–897 (1992).
[CrossRef]

Optik (1)

Y. Zou, “A new definition for resolution of imaging fiber bundles at static scanning,” Optik 94, 43–47 (1993).

Optoelectronics (1)

Y. Chugs, K. Fujiwara, Y. Hattori, Y. Matsuda, “Properties of silica glass image fiber and its application,” Optoelectronics 1, 203–216 (1986).

Other (16)

M. Mogi, K. Yoshimura, “Development of super high density packed image guide,” in Optical Fibers in Medicine IV, A. Katzir, ed., Proc. SPIE 1067, 172–180 (1989).

R. Conde, “Image quality in microendoscopy: limiting factors,” in Biomedical Optoelectronic Devices and Systems, N. I. Croitoru, R. Pratesi, eds., Proc. SPIE 2084, 243–250 (1993).

R. A. Novotny, “Parallel optical data links using VCSEL’s,” in Vertical-Cavity Surface-Emitting Laser Arrays, J. L. Jewell, ed., Proc. SPIE 2147, 140–149 (1994).

D. H. Hartman, “Electrical limitations to optical interconnect technology,” in Workshop Notes: IEEE Workshop on Interconnects within High-Speed Digital Systems (Institute of Electrical and Electronics Engineers, New York, 1995).

D. K. Lewis, “The OETC parallel fiber link project,” in Workshop Notes: IEEE Workshop on Interconnects within High-Speed Digital Systems (Institute of Electrical and Electronics Engineers, New York, 1995).

Y. S. Liu, H. S. Cole, J. P. Bristow, Y. Liu, “Polymer-based optical interconnect technology: a route to low-cost optoelectronic packaging and interconnect,” in Optoelectronic Interconnects III, R. T. Chen, H. S. Hinton, eds., Proc. SPIE 2400, 80–88 (1995).

K. Koyabu, F. Ohira, T. Yamamoto, S. Matsuo, “Novel high-density collimator module,” in Optical Fiber Communication Conference and International Conference on Integrated Optics and Optical Fiber Communication: OFC/IOOC, Vol. 4 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 2–3.

J. M. Sasian, R. A. Novotny, M. G. Beckman, S. L. Walker, M. J. Wojcik, S. J. Hinterlog, “Fabrication of fiber arrays for optical computing and switching systems,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 229–230.

M. J. Murdocca, T. W. Stone, “Parallel optical interconnections,” in Optical Computing Hardware, J. Jahns, S. H. Lee, eds. (Academic, New York, 1994), Chap. 8.

N. S. Kapany, Fiber Optics, Principles and Applications (Academic, New York, 1967), Chap. 3.

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978), Chap. 11.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 6.

K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, Y. Mitsuhashi, “Integration of free-space interconnects using SELFOC lenses: optical properties of a basic unit,” in Technical Digest of International Conference on Optical Computing (International Commission for Optics, Edinburgh, Scotland, 1994), pp. 227–228.

W. V. Schempp, “Fiber optic imaging: an introduction,” in Proceedings of Photonics West ’95, 4–10 February 1995, San Jose, Calif., Short course note 33.

R. Kingslake, Optical System Design (Academic, New York, 1983), Chap. 6.

S. K. Tewksbury, “Interconnections within microelectronics systems,” in Microelectronic System Interconnections, S. K. Tewksbury, ed. (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 3–49.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Schematic diagram of a unidirectional bit-parallel optical FIG-based interconnect system.

Fig. 2
Fig. 2

(a) Geometry and parameters of a simple linear fiber taper. (b) Key parameters of a fiber image taper-based and FIG-based bit-parallel optical interconnect. (c) Key parameters of a lens-based and FIG-based bit-parallel optical interconnect.

Fig. 3
Fig. 3

Power-coupling loss caused by numerical-aperture mismatch at the fiber image taper.

Fig. 4
Fig. 4

Comparison of numerical-aperture mismatch-based power coupling losses (in decibels) for a taper- and a lens-based coupling.

Fig. 5
Fig. 5

(a) Illustration of the vignetting phenomenon caused by the illumination variations of on-axis and off-axis imaging points. (b) Parameters useful for calculating the geometric overlap of the aperture and projection circles.

Fig. 6
Fig. 6

(a) Cross-section view of a possible power-loss mechanism at the interface between two FIG components. The effective area is where power is coupled from one FIG into another. (b) Cross-section view at the slightly misaligned interface.

Fig. 7
Fig. 7

Plot of the power loss that is due to the area-utilization ratio and possible misalignment.

Fig. 8
Fig. 8

Samplings of two different sinusoidal intensity distributions by use of a FIG with a sampling period h. Although the sampled amplitude of the lower-frequency intensity distribution (right-hand side) stays the same as 2B, where B is the magnitude of the modulation, the sample amplitude of the higher-frequency intensity distribution (left-hand side) becomes smaller.

Fig. 9
Fig. 9

Image cross talk at the interface between two identical, hexagonally packaged FIG’s. The four shaded fiber groups in the left-side diagram represent the transmitted image of the four dark fibers from the other side of the interface. The center-to-center spacing between two fibers is denoted by p.

Fig. 10
Fig. 10

Calculated FIG modulation transfer functions. The broadest curve denotes the point-spread function of a single fiber. The next three curves (next-widest to narrowest) represent the transfer function of a FIG made up of a hexagonal package of fibers and the transfer functions of two and three such FIG’s connected in series, respectively.

Fig. 11
Fig. 11

A photograph showing two fiber image tapers, an 8 × 8 VCSEL array chip, and a connector housing a taper to establish an interconnect between a thin FIG and the VCSEL chip.

Fig. 12
Fig. 12

Optical setup to measure the power loss associated with a FIG-based bit-parallel interconnect.

Fig. 13
Fig. 13

Calculated and measured power transmission loss of two FIG-based optical interconnect systems. The magnification ratios of the two systems are characterized by m i = 1/m 0 = m = 1/4 and m i = 1/m 0 = m = 1/8, respectively. The FIG has a length of 1 m in either case.

Fig. 14
Fig. 14

Plot of the analytical power-loss distribution along a FIG-based optical interconnect cable.

Fig. 15
Fig. 15

Calculated and measured power transmission loss of a lens-based optical interconnect system. The magnification ratio is characterized by m i = 1/m 0 = m = 1/4. The length of the FIG is 10 m.

Fig. 16
Fig. 16

Plot of the analytical power-loss distribution along the lens-based optical interconnect cable.

Fig. 17
Fig. 17

Calculated and measured modulation transfer functions of the two FIG-based optical interconnection systems.

Fig. 18
Fig. 18

Calculated and measured modulation transfer functions of the lens-based optical interconnect system.

Fig. 19
Fig. 19

(a) Photograph of the imaging result of an array of 8 × 8 light spots. (b) Intensity distribution profile along the row direction of (a). (c) Photograph of the imaging result of an array of 16 × 16 light spots. (d) Intensity distribution profile along the row direction of (c).

Fig. 20
Fig. 20

Optical cross-talk measurements of a lens-based FIG interconnect. (a) The self-referenced signal level. The optical cross talk measured (b) at an immediate neighboring optical channel, (c) at the second-nearest neighboring channel, and (d) at the third-nearest neighboring channel. Less than −30-dB optical cross-talk values were observed.

Fig. 21
Fig. 21

Formation of a possible monolithic, tapered, flexible FIG interconnect cable: the FIG’s illustrated are for (a) large-cross-section multicore fibers packed in a preform process, (b) fibers pulled to form a flexible FIG with both ends tapered, and (c) a possible bending of two ends to ease the interface with the transmitter and receiver arrays.

Tables (1)

Tables Icon

Table 1 Summary of Sample Taper Parameters

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d 1 sin θ 1 = d 2 sin θ 2 ,
L NA Tp = 10 log [ tan θ Tpi tan θ L D ] 2 = 10 log ( m i NA FIG ) 2 ( 1 - NA L D 2 ) ( 1 - m i 2 NA FIG 2 ) NA L D 2 .
m = l 2 l 1 = tan θ L n 2 tan θ L n 1 ,
tan θ 2 = D 2 l 2 = 1 2 F # ( m + 1 ) ,
sin θ 2 = 1 4 F # 2 ( m + 1 ) 2 + 1 ,
L NA L n = 10 log ( tan θ L n i tan θ L D ) 2 = 10 log m i 2 ( 1 - NA L D 2 ) 4 F # 2 ( m i + 1 ) 2 NA L D 2 .
β = L NA Tp - L NA L n = 10 log [ 2 F # NA FIG ( m i + 1 ) ] 2 1 - m i 2 NA FIG 2 .
cos γ = D 2 - D 2 + 4 p 2 4 p D ,
cos ϕ = D 2 - D 2 + 4 p 2 4 p D .
S 1 = 1 2 ( D 2 ) 2 2 γ - ( D 2 ) sin γ ( D 2 ) 2 - ( D sin γ 2 ) 2 = ( D 2 ) 2 [ γ - sin γ cos γ ] .
L Vn = 10 log S 1 + S 2 π ( D 2 ) 2 = 10 log { 1 π ( D D ) 2 [ γ - sin γ cos γ ] + 1 π [ ϕ - sin ϕ cos ϕ ] } .
α = S 1 S 1 + S 2 ,
L I MAX = 10 log S 1 - S 2 S 1 + S 2 = 10 log ( 2 α - 1 ) ,
L I Av = 10 log [ 1 2 ( α + S 1 - S 2 S 1 + S 2 ) ] = 10 log [ 1 2 ( 3 α - 1 ) ] .
P = 2 J 1 ( π h ν ) π h ν ,
T FIG = 2 J 1 ( π h ν ) π h ν cos π ν h .
ν 0 = 1 3 k p .
ν 0 = 1 3 ( p 0 + p 1 + + p k ) .
T L n ( ν ) = 2 π [ cos - 1 ( ν 2 ν 0 ) - ν 2 ν 0 1 - ( ν 2 ν 0 ) 2 ] ,             ν 2 ν 0 ,
ν 0 = D 2 λ l 2 = m 2 λ F # ( 1 + m )
T L n ( ν ) = T L n 1 ( ν ) T FIG ( ν ) T L n 2 ( ν ) .

Metrics