Abstract

A prototype of a novel topology for scaleable optical interconnection networks called the optical multi-mesh hypercube (OMMH) is experimentally demonstrated to as high as a 150-Mbit/s data rate (27 − 1 nonreturn-to-zero pseudo-random data pattern) at a bit error rate of 10−13/link by the use of commercially available devices. OMMH is a scaleable network [Appl. Opt. 33, 7558 (1994); J. Lightwave Technol. 12, 704 (1994)] architecture that combines the positive features of the hypercube (small diameter, connectivity, symmetry, simple routing, and fault tolerance) and the mesh (constant node degree and size scaleability). The optical implementation method is divided into two levels: high-density local connections for the hypercube modules, and high-bit-rate, low-density, long connections for the mesh links connecting the hypercube modules. Free-space imaging systems utilizing vertical-cavity surface-emitting laser (VCSEL) arrays, lenslet arrays, space-invariant holographic techniques, and photodiode arrays are demonstrated for the local connections. Optobus fiber interconnects from Motorola are used for the long-distance connections. The OMMH was optimized to operate at the data rate of Motorola’s Optobus (10-bit-wide, VCSEL-based bidirectional data interconnects at 150 Mbits/s). Difficulties encountered included the varying fan-out efficiencies of the different orders of the hologram, misalignment sensitivity of the free-space links, low power (1 mW) of the individual VCSEL’s, and noise.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Louri, H. Sung, “A scaleable optical hypercube-based interconnection network for massively parallel computing,” Appl. Opt. 33, 7588–7598 (1994).
    [CrossRef] [PubMed]
  2. A. Louri, H. Sung, “An optical multi-mesh hypercube: a scaleable optical interconnection network for massively parallel computing,” J. Lightwave Technol. 12, 704–716 (1994).
    [CrossRef]
  3. A. Louri, H. Sung, “3D optical interconnects for high-speed interchip and interboard communications,” Computer 27, 27–37 (1994).
    [CrossRef]
  4. A. Louri, S. Furlonge, “Feasibility study of a scaleable optical interconnection network for massively parallel processing systems,” Appl. Opt. 35, 1296–1308 (1996).
    [CrossRef] [PubMed]
  5. T. S. Wailes, D. G. Meyer, “Multiple channel architecture: a new optical interconnection strategy for massively parallel computers,” J. Lightwave Technol. 9, 1702–1716 (1991).
    [CrossRef]
  6. G. R. Hill, “Wavelength domain optical network techniques,” Proc. IEEE 77, 121–132 (1989).
  7. M. G. Hluchyj, M. J. Karol, “ShuffleNet: an application of generalized perfect shuffles to multihop lightwave networks,” J. Lightwave Technol. 9, 1386–1397 (1991).
    [CrossRef]
  8. R. J. Vetter, D. H. C. Du, “Distributed computing with high-speed optical networks,” IEEE Trans. Comput.8–18 (1993).
  9. D. Bursky, “Parallel optical links move data at 3 Gbits/s,” Electron. Design 42, 79–82 (1994).
  10. Motorola Corporation, “Optobus™,” Tech. rep. BR1459/D, (Logic Integrated Circuits Division, Motorola, Tempe, Ariz., 1995).
  11. A. Louri, H. Sung, “Efficient implementation methodology for three-dimensional space-invariant hypercube-based free-space optical interconnection networks,” Appl. Opt. 32, 7200–7209 (1993).
    [CrossRef] [PubMed]
  12. A. Louri, H. Sung, “Design methodology for three-dimensional space-invariant hypercube networks using graph bipartitioning,” Opt. Lett. 18, 2050–2052 (1993).
    [CrossRef] [PubMed]
  13. C. Fan, B. Mansoorian, D. A. VanBlerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 34, 3103–3115 (1995).
    [CrossRef] [PubMed]
  14. S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
    [CrossRef]
  15. J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections, Cancun, Mexico, 26–27 April 1994, pp. 202–212.
  16. N. C. Craft, A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
    [CrossRef] [PubMed]
  17. G. Olbright, “VCSEL’s could revolutionize optical communications,” Photon. Spectra 29, 98–101 (1995).
  18. T. V. Muoi, “Receiver design for high-speed optical-fiber systems,” J. Lightwave Technol. 2, 243–267 (1984).
    [CrossRef]
  19. M. E. Landgraf, C. A. Eldering, S. T. Kowel, P. F. Brinkley, “Optical interconnection techniques for hypercube,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE 1347, 580–591 (1990).
  20. 8-Pin Monolithic Amplifier Evaluation Boards (Comlinear Corporation, Fort Collins, Colo., January1993).
  21. H. P. Herzig, P. Ehbets, D. Prongue, R. Dandliker, “Fan-out elements recorded as volume holograms: optimized recording conditions,” Appl. Opt. 31, 5716–5723 (1992).
    [CrossRef] [PubMed]
  22. B. Robertson, M. R. Taghizadeh, J. Tutunen, A. Vasara, “Fabrication of space-invariant fan-out components in dichromated gelatin,” Appl. Opt. 29, 1134–1141 (1990).
    [CrossRef] [PubMed]
  23. B. Robertson, M. R. Taghizadeh, E. Restall, A. C. Walker, “Space-invariant holographic optical elements in dichromated gelatin,” Appl. Opt. 30, 2368–2375 (1991).
    [CrossRef] [PubMed]

1996 (1)

1995 (2)

1994 (5)

A. Louri, H. Sung, “A scaleable optical hypercube-based interconnection network for massively parallel computing,” Appl. Opt. 33, 7588–7598 (1994).
[CrossRef] [PubMed]

D. Bursky, “Parallel optical links move data at 3 Gbits/s,” Electron. Design 42, 79–82 (1994).

A. Louri, H. Sung, “An optical multi-mesh hypercube: a scaleable optical interconnection network for massively parallel computing,” J. Lightwave Technol. 12, 704–716 (1994).
[CrossRef]

A. Louri, H. Sung, “3D optical interconnects for high-speed interchip and interboard communications,” Computer 27, 27–37 (1994).
[CrossRef]

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

1993 (3)

1992 (2)

1991 (3)

B. Robertson, M. R. Taghizadeh, E. Restall, A. C. Walker, “Space-invariant holographic optical elements in dichromated gelatin,” Appl. Opt. 30, 2368–2375 (1991).
[CrossRef] [PubMed]

M. G. Hluchyj, M. J. Karol, “ShuffleNet: an application of generalized perfect shuffles to multihop lightwave networks,” J. Lightwave Technol. 9, 1386–1397 (1991).
[CrossRef]

T. S. Wailes, D. G. Meyer, “Multiple channel architecture: a new optical interconnection strategy for massively parallel computers,” J. Lightwave Technol. 9, 1702–1716 (1991).
[CrossRef]

1990 (1)

1989 (1)

G. R. Hill, “Wavelength domain optical network techniques,” Proc. IEEE 77, 121–132 (1989).

1984 (1)

T. V. Muoi, “Receiver design for high-speed optical-fiber systems,” J. Lightwave Technol. 2, 243–267 (1984).
[CrossRef]

Brinkley, P. F.

M. E. Landgraf, C. A. Eldering, S. T. Kowel, P. F. Brinkley, “Optical interconnection techniques for hypercube,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE 1347, 580–591 (1990).

Bursky, D.

D. Bursky, “Parallel optical links move data at 3 Gbits/s,” Electron. Design 42, 79–82 (1994).

Chen, R. T.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Craft, N. C.

Dandliker, R.

Du, D. H. C.

R. J. Vetter, D. H. C. Du, “Distributed computing with high-speed optical networks,” IEEE Trans. Comput.8–18 (1993).

Ehbets, P.

Eldering, C. A.

M. E. Landgraf, C. A. Eldering, S. T. Kowel, P. F. Brinkley, “Optical interconnection techniques for hypercube,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE 1347, 580–591 (1990).

Esener, S. C.

Fan, C.

Feldblum, A. Y.

Furlonge, S.

Garrett, L.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Gerold, D.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Hansen, M. W.

Herzig, H. P.

Hill, G. R.

G. R. Hill, “Wavelength domain optical network techniques,” Proc. IEEE 77, 121–132 (1989).

Hluchyj, M. G.

M. G. Hluchyj, M. J. Karol, “ShuffleNet: an application of generalized perfect shuffles to multihop lightwave networks,” J. Lightwave Technol. 9, 1386–1397 (1991).
[CrossRef]

Karol, M. J.

M. G. Hluchyj, M. J. Karol, “ShuffleNet: an application of generalized perfect shuffles to multihop lightwave networks,” J. Lightwave Technol. 9, 1386–1397 (1991).
[CrossRef]

Kowel, S. T.

M. E. Landgraf, C. A. Eldering, S. T. Kowel, P. F. Brinkley, “Optical interconnection techniques for hypercube,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE 1347, 580–591 (1990).

Landgraf, M. E.

M. E. Landgraf, C. A. Eldering, S. T. Kowel, P. F. Brinkley, “Optical interconnection techniques for hypercube,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE 1347, 580–591 (1990).

Li, M. M.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Louri, A.

Mansoorian, B.

Marsden, G. C.

Meyer, D. G.

T. S. Wailes, D. G. Meyer, “Multiple channel architecture: a new optical interconnection strategy for massively parallel computers,” J. Lightwave Technol. 9, 1702–1716 (1991).
[CrossRef]

Muoi, T. V.

T. V. Muoi, “Receiver design for high-speed optical-fiber systems,” J. Lightwave Technol. 2, 243–267 (1984).
[CrossRef]

Neff, J.

J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections, Cancun, Mexico, 26–27 April 1994, pp. 202–212.

Olbright, G.

G. Olbright, “VCSEL’s could revolutionize optical communications,” Photon. Spectra 29, 98–101 (1995).

Ozguz, V. H.

Prongue, D.

Restall, E.

Robertson, B.

Sung, H.

Taghizadeh, M. R.

Tang, S.

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

Tutunen, J.

VanBlerkom, D. A.

Vasara, A.

Vetter, R. J.

R. J. Vetter, D. H. C. Du, “Distributed computing with high-speed optical networks,” IEEE Trans. Comput.8–18 (1993).

Wailes, T. S.

T. S. Wailes, D. G. Meyer, “Multiple channel architecture: a new optical interconnection strategy for massively parallel computers,” J. Lightwave Technol. 9, 1702–1716 (1991).
[CrossRef]

Walker, A. C.

Appl. Opt. (8)

B. Robertson, M. R. Taghizadeh, J. Tutunen, A. Vasara, “Fabrication of space-invariant fan-out components in dichromated gelatin,” Appl. Opt. 29, 1134–1141 (1990).
[CrossRef] [PubMed]

B. Robertson, M. R. Taghizadeh, E. Restall, A. C. Walker, “Space-invariant holographic optical elements in dichromated gelatin,” Appl. Opt. 30, 2368–2375 (1991).
[CrossRef] [PubMed]

N. C. Craft, A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
[CrossRef] [PubMed]

A. Louri, H. Sung, “Efficient implementation methodology for three-dimensional space-invariant hypercube-based free-space optical interconnection networks,” Appl. Opt. 32, 7200–7209 (1993).
[CrossRef] [PubMed]

A. Louri, H. Sung, “A scaleable optical hypercube-based interconnection network for massively parallel computing,” Appl. Opt. 33, 7588–7598 (1994).
[CrossRef] [PubMed]

C. Fan, B. Mansoorian, D. A. VanBlerkom, M. W. Hansen, V. H. Ozguz, S. C. Esener, G. C. Marsden, “Digital free-space optical interconnections: a comparison of transmitter technologies,” Appl. Opt. 34, 3103–3115 (1995).
[CrossRef] [PubMed]

A. Louri, S. Furlonge, “Feasibility study of a scaleable optical interconnection network for massively parallel processing systems,” Appl. Opt. 35, 1296–1308 (1996).
[CrossRef] [PubMed]

H. P. Herzig, P. Ehbets, D. Prongue, R. Dandliker, “Fan-out elements recorded as volume holograms: optimized recording conditions,” Appl. Opt. 31, 5716–5723 (1992).
[CrossRef] [PubMed]

Computer (1)

A. Louri, H. Sung, “3D optical interconnects for high-speed interchip and interboard communications,” Computer 27, 27–37 (1994).
[CrossRef]

Electron. Design (1)

D. Bursky, “Parallel optical links move data at 3 Gbits/s,” Electron. Design 42, 79–82 (1994).

IEEE Trans. Comput. (1)

R. J. Vetter, D. H. C. Du, “Distributed computing with high-speed optical networks,” IEEE Trans. Comput.8–18 (1993).

J. Lightwave Technol. (5)

M. G. Hluchyj, M. J. Karol, “ShuffleNet: an application of generalized perfect shuffles to multihop lightwave networks,” J. Lightwave Technol. 9, 1386–1397 (1991).
[CrossRef]

T. S. Wailes, D. G. Meyer, “Multiple channel architecture: a new optical interconnection strategy for massively parallel computers,” J. Lightwave Technol. 9, 1702–1716 (1991).
[CrossRef]

T. V. Muoi, “Receiver design for high-speed optical-fiber systems,” J. Lightwave Technol. 2, 243–267 (1984).
[CrossRef]

S. Tang, R. T. Chen, L. Garrett, D. Gerold, M. M. Li, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical cavity surface-emitting laser diodes, microlenses, and photodetectors,” J. Lightwave Technol. 12, 1971–1975 (1994).
[CrossRef]

A. Louri, H. Sung, “An optical multi-mesh hypercube: a scaleable optical interconnection network for massively parallel computing,” J. Lightwave Technol. 12, 704–716 (1994).
[CrossRef]

Opt. Lett. (1)

Photon. Spectra (1)

G. Olbright, “VCSEL’s could revolutionize optical communications,” Photon. Spectra 29, 98–101 (1995).

Proc. IEEE (1)

G. R. Hill, “Wavelength domain optical network techniques,” Proc. IEEE 77, 121–132 (1989).

Other (4)

Motorola Corporation, “Optobus™,” Tech. rep. BR1459/D, (Logic Integrated Circuits Division, Motorola, Tempe, Ariz., 1995).

J. Neff, “Optical interconnects based on two-dimensional VCSEL arrays,” in IEEE Proceedings of the First International Workshop on Massively Parallel Processing Using Optical Interconnections, Cancun, Mexico, 26–27 April 1994, pp. 202–212.

M. E. Landgraf, C. A. Eldering, S. T. Kowel, P. F. Brinkley, “Optical interconnection techniques for hypercube,” in Optical Information Processing Systems and Architectures II, B. Javidi, ed., Proc. SPIE 1347, 580–591 (1990).

8-Pin Monolithic Amplifier Evaluation Boards (Comlinear Corporation, Fort Collins, Colo., January1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Sample (2,2,3)-OMMH network with four hypercubes, eight meshes, and 32 nodes.

Fig. 2
Fig. 2

Three-dimensional view of a (2,2,3)-OMMH showing plane L and plane R interconnected by four space-invariant optical interconnection modules. (a) The free-space links are shown separated from (b) the mesh links for clarity of the figure. Note that there are four hypercubes interconnected by fibers. Hypercube connectivity is achieved through free-space space-invariant interconnection modules. For example, module n24, n27, n29, n30 from plane L and module n25, n26, n28, n31 from plane R belong to the same hypercube. The connection patterns for the free-space links are all identical in both directions, as shown by the solid and the dashed arrows.

Fig. 3
Fig. 3

Setup for the experimental OMMH. The test-interface board interfaces the free-space and fiber links of the OMMH, providing the power-ground, input data, and output test points. The fiber links of plane L are implemented by four Optobus modules. The free-space links for a single hypercube are also shown. Definitions: VCSEL, vertical-cavity surface-emitting laser; D, transmitter; Q, receiver; A and B, 50-pin latch–eject connectors; DCG hologram, dichromated-gelatin hologram; DC, VCSEL drive circuit; RC, receiver circuit; ML, microlens array. Symbols: ao-35-35-6909-i001, switch; ao-35-35-6909-i002, flat ribbon cable; ao-35-35-6909-i003, wire wrap; ao-35-35-6909-i004, 10-channel fiber ribbon.

Fig. 4
Fig. 4

Photograph of the laboratory prototype of the OMMH.

Fig. 5
Fig. 5

Photograph of the laboratory prototype of the free-space links in the OMMH.

Fig. 6
Fig. 6

Noise received at node 11 (FIBER), with the eye diagram superimposed to show the signal and the noise.

Fig. 7
Fig. 7

Measured eye pattern for node n27 transmitting to node n26 (FREE-SPACE) at a 150-MHz data rate (27 − 1 NRZ pseudo-random data pattern). This node receives from the zero order of the hologram, and therefore the eye opening is greater than the nodes receiving from the ±1 orders. The eye opening is 0.8 V.

Fig. 8
Fig. 8

Measured eye pattern for node n27 transmitting to node n25 (FREE-SPACE) at a 150-MHz data rate (27 − 1 NRZ pseudo-random data pattern). The eye opening is 0.16 V.

Fig. 9
Fig. 9

Measured eye pattern for node n27 transmitting to node n31 (FREE-SPACE) at a 150-MHz data rate (27 − 1 NRZ pseudo-random data pattern). The eye opening for this node is 0.4 V.

Fig. 10
Fig. 10

Measured noise at node n26 superimposed with the eye diagram to show the difference between the signal and the noise.

Fig. 11
Fig. 11

Photograph of the space-invariant fan-out pattern implementing free-space connectivity in the OMMH.

Tables (1)

Tables Icon

Table 1 Free-Space Link Power Budget

Metrics