Abstract

Second- and third-harmonic generations of femtosecond and picosecond laser pulses have been measured from chicken skin, muscle, and fat tissues. The magnitude of the harmonic signals showed a strong structural dependence with the signal from skin interface being the strongest. The polarization dependence of the signal was also measured and found to be consistent with the fact that the tissue samples were highly scattering random media. The second-harmonic- and third-harmonic-generation conversion efficiencies were found to be in the range of ~10−7 to ~10−10.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectrafrom breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
    [CrossRef]
  2. D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
    [CrossRef] [PubMed]
  3. J. Haung, A. Lewis, “Determination of the absolute orientation of the retinyldiene chromophore in purple membrane by a second harmonic interference technique,” Biophys. J. 55, 835–842 (1989).
    [CrossRef]
  4. J. Huang, Z. Chen, A. Lewis, “Second harmonic generation in purple membrane–poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
    [CrossRef]
  5. S. Roth, I. Freund, “Optical second harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
    [CrossRef] [PubMed]
  6. I. Freund, M. Deutsch, A. Sprecher, “Connective tissue polarity optical second harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
    [CrossRef] [PubMed]
  7. O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65, 672–679 (1993).
    [CrossRef] [PubMed]
  8. B. A. Rockwell, W. P. Roach, M. E. Rogers, M. W. Mayo, C. A. Toth, “Nonlinear refraction in vitreous humor,” Opt. Lett. 18, 1792–1794 (1993).
    [CrossRef] [PubMed]
  9. See, for example, Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

1993 (2)

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65, 672–679 (1993).
[CrossRef] [PubMed]

B. A. Rockwell, W. P. Roach, M. E. Rogers, M. W. Mayo, C. A. Toth, “Nonlinear refraction in vitreous humor,” Opt. Lett. 18, 1792–1794 (1993).
[CrossRef] [PubMed]

1989 (2)

J. Haung, A. Lewis, “Determination of the absolute orientation of the retinyldiene chromophore in purple membrane by a second harmonic interference technique,” Biophys. J. 55, 835–842 (1989).
[CrossRef]

J. Huang, Z. Chen, A. Lewis, “Second harmonic generation in purple membrane–poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

1987 (1)

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectrafrom breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

1986 (2)

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

I. Freund, M. Deutsch, A. Sprecher, “Connective tissue polarity optical second harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

1981 (1)

S. Roth, I. Freund, “Optical second harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
[CrossRef] [PubMed]

Alfano, M. A.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Alfano, R. R.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectrafrom breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Bouevitch, O.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65, 672–679 (1993).
[CrossRef] [PubMed]

Chen, Z.

J. Huang, Z. Chen, A. Lewis, “Second harmonic generation in purple membrane–poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

Choy, D. S.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectrafrom breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Cordero, J.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Deutsch, M.

I. Freund, M. Deutsch, A. Sprecher, “Connective tissue polarity optical second harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

Foresti, M.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Freund, I.

I. Freund, M. Deutsch, A. Sprecher, “Connective tissue polarity optical second harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

S. Roth, I. Freund, “Optical second harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
[CrossRef] [PubMed]

Haung, J.

J. Haung, A. Lewis, “Determination of the absolute orientation of the retinyldiene chromophore in purple membrane by a second harmonic interference technique,” Biophys. J. 55, 835–842 (1989).
[CrossRef]

Huang, J.

J. Huang, Z. Chen, A. Lewis, “Second harmonic generation in purple membrane–poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

Lam, W.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectrafrom breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Lewis, A.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65, 672–679 (1993).
[CrossRef] [PubMed]

J. Huang, Z. Chen, A. Lewis, “Second harmonic generation in purple membrane–poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

J. Haung, A. Lewis, “Determination of the absolute orientation of the retinyldiene chromophore in purple membrane by a second harmonic interference technique,” Biophys. J. 55, 835–842 (1989).
[CrossRef]

Loew, L. M.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65, 672–679 (1993).
[CrossRef] [PubMed]

Mayo, M. W.

Opher, E.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectrafrom breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Pinevsky, I.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65, 672–679 (1993).
[CrossRef] [PubMed]

Pradhan, A.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectrafrom breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Roach, W. P.

Rockwell, B. A.

Rogers, M. E.

Roth, S.

S. Roth, I. Freund, “Optical second harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
[CrossRef] [PubMed]

Shen, Y. R.

See, for example, Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Sprecher, A.

I. Freund, M. Deutsch, A. Sprecher, “Connective tissue polarity optical second harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

Tang, G. C.

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectrafrom breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Tata, D. B.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Tomashefsky, P.

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

Toth, C. A.

Wuskell, J. P.

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65, 672–679 (1993).
[CrossRef] [PubMed]

Biophys. J. (4)

D. B. Tata, M. Foresti, J. Cordero, P. Tomashefsky, M. A. Alfano, R. R. Alfano, “Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues,” Biophys. J. 50, 463–469 (1986).
[CrossRef] [PubMed]

J. Haung, A. Lewis, “Determination of the absolute orientation of the retinyldiene chromophore in purple membrane by a second harmonic interference technique,” Biophys. J. 55, 835–842 (1989).
[CrossRef]

I. Freund, M. Deutsch, A. Sprecher, “Connective tissue polarity optical second harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon,” Biophys. J. 50, 693–712 (1986).
[CrossRef] [PubMed]

O. Bouevitch, A. Lewis, I. Pinevsky, J. P. Wuskell, L. M. Loew, “Probing membrane potential with nonlinear optics,” Biophys. J. 65, 672–679 (1993).
[CrossRef] [PubMed]

Biopolymers (1)

S. Roth, I. Freund, “Optical second harmonic scattering in rat-tail tendon,” Biopolymers 20, 1271–1290 (1981).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

R. R. Alfano, G. C. Tang, A. Pradhan, W. Lam, D. S. Choy, E. Opher, “Fluorescence spectrafrom breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

J. Phys. Chem. (1)

J. Huang, Z. Chen, A. Lewis, “Second harmonic generation in purple membrane–poly(vinyl alcohol) films: probing the dipolar characteristics of the bacteriorhodopsin chromophore in bR570 and M412,” J. Phys. Chem. 93, 3314–3320 (1989).
[CrossRef]

Opt. Lett. (1)

Other (1)

See, for example, Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: M, mirror; λ/2, half-wave plate; L, lens or UV lens; P1, polarizer; P2, analyzer; S, sample; F1, F2, long-and short-pass filters, respectively; D, depolarizer; C, chopper; PMT, photomultiplier.

Fig. 2
Fig. 2

(a) SHG intensities from different samples under S-polarized femtosecond laser excitation at 810 nm. The SH signals are marked as curves a, b, and c for S-polarized SHG signals from skin, muscle, and fat interfaces, respectively. Curves a′ and b′ are for P-polarized SH signals from chicken skin and chicken muscle interfaces, respectively. The magnitude of curve c is magnified 10×. (b) SHG intensities from different samples under P-polarized femtosecond laser excitation at 810 nm. The SH signals are marked as curves a and b for S-polarized SHG signals from skin and muscle interfaces, respectively. Curves a′ and b′ are for P-polarized SH signals from skin and muscle interfaces, respectively.

Fig. 3
Fig. 3

THG intensities for different samples under picosecond laser excitation at 1064 nm. The third-harmonic signals are marked as a, b, and c for skin, muscle, and fat, respectively.

Tables (1)

Tables Icon

Table 1 SH and TH Intensity Ratios and Conversion Efficiencies of Chicken Biological Interfaces

Metrics