Abstract

A method of generating images through highly scattering media is presented that involves comparing measurements of the time-dependent intensity of transmitted light with an analytical model describing the sensitivity of that intensity on localized changes in optical properties. A least-squares fitting procedure is employed to derive the amplitudes of the measurement perturbations caused by embedded absorbers and scatterers located along a line of sight between the source and detector. Images are presented of a highly scattering, solid plastic phantom with optical properties closely matched to those of human breast tissue at near-infrared wavelengths. The phantom is a 54-mm-thick slab, containing four small cylinders of contrasting scatter and absorption. Results show that embedded absorbers can be distinguished from embedded scatterers, and that the diffusion perturbation amplitude provides inherently greater spatial resolution than the absorption perturbation amplitude.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation (SPIE, Bellingham, Wash., 1995).
  2. E. Leith, C. Chen, H. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [CrossRef]
  3. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  4. M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).
    [CrossRef] [PubMed]
  5. S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef] [PubMed]
  6. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
    [CrossRef] [PubMed]
  7. J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
    [PubMed]
  8. J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
    [CrossRef] [PubMed]
  9. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
    [CrossRef] [PubMed]
  10. G. Zaccanti, P. Donelli, “Attenuation of energy in time-gated transillumination imaging: numerical results,” Appl. Opt. 33, 7023–7030 (1994).
    [CrossRef] [PubMed]
  11. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  12. A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
    [CrossRef]
  13. J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
    [CrossRef] [PubMed]
  14. S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).
  15. M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
    [CrossRef]
  16. H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 372–386 (1993).
  17. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
    [CrossRef] [PubMed]
  18. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [CrossRef] [PubMed]
  19. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 34, 1767–1774 (1996).
    [CrossRef]
  20. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
    [CrossRef] [PubMed]
  21. S. R. Arridge, “Photon measurement density functions: analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  22. S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
    [CrossRef] [PubMed]
  23. S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
    [CrossRef] [PubMed]
  24. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency domain diffusing photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef]
  25. M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 98–102 (1995).
  26. S. Feng, F.-A. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).
    [CrossRef] [PubMed]
  27. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
    [CrossRef] [PubMed]
  28. S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 360–371 (1993).
  29. M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multichannel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 264–273 (1995).
  30. S. R. Arridge, M. Schweiger, “Photon measurement density functions part II: finite element method calculations,” Appl. Opt. 34, 8026–8037 (1995).
    [CrossRef] [PubMed]

1996 (1)

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 34, 1767–1774 (1996).
[CrossRef]

1995 (8)

1994 (2)

1993 (5)

J. C. Hebden, “Time-resolved imaging of opaque and transparent spheres embedded in a highly scattering medium,” Appl. Opt. 32, 3837–3841 (1993).
[PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

1992 (2)

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

E. Leith, C. Chen, H. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
[CrossRef]

1991 (2)

M. D. Duncan, R. Mahon, L. L. Tankersley, J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868–1870 (1991).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

1990 (2)

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

S. Andersson-Engels, R. Berg, S. Svanberg, O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
[CrossRef] [PubMed]

1989 (2)

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Alfano, R. R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Andersson-Engels, S.

Aronson, R.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 372–386 (1993).

Arridge, S. R.

S. R. Arridge, “Photon measurement density functions: analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions part II: finite element method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 360–371 (1993).

Barbour, R. L.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 372–386 (1993).

Benaron, D. A.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Berg, R.

Boas, D. A.

Bonner, R. F.

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 34, 1767–1774 (1996).
[CrossRef]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Chance, B.

Chang, J.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 372–386 (1993).

Chen, C.

Chen, H.

Cope, M.

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Delpy, D.

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 360–371 (1993).

Delpy, D. T.

J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).

Dilworth, D.

Donelli, P.

Duncan, M. D.

Fantini, S.

M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multichannel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 264–273 (1995).

Feng, S.

Firbank, M.

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Franceschini, M. A.

M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multichannel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 264–273 (1995).

Gandjbakhche, A. H.

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 34, 1767–1774 (1996).
[CrossRef]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Graber, H. L.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 372–386 (1993).

Gratton, E.

M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multichannel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 264–273 (1995).

Grünbaum, F. A.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Hall, D. J.

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
[CrossRef] [PubMed]

Hebden, J. C.

Hiraoka, M.

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 360–371 (1993).

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 98–102 (1995).

Jarlman, O.

Jiang, H.

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Kohn, P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Leith, E.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Lopez, J.

Lubowsky, J.

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 372–386 (1993).

Mahon, R.

Maier, J. S.

M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multichannel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 264–273 (1995).

Mantulin, W. W.

M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multichannel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 264–273 (1995).

Nossal, R.

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 34, 1767–1774 (1996).
[CrossRef]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

O’Leary, M. A.

Ostermeyer, M. R.

M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 98–102 (1995).

Patterson, M. S.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Paulsen, K. D.

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

Reintjes, J.

Rudd, J.

Schweiger, M.

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, “Photon measurement density functions part II: finite element method calculations,” Appl. Opt. 34, 8026–8037 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 360–371 (1993).

Singer, J. R.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Stevenson, D. K.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Sun, P.-C.

Svanberg, S.

Tankersley, L. L.

Valdmanis, J.

Vossler, G.

Walker, S. A.

M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multichannel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 264–273 (1995).

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Weiss, G. H.

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 34, 1767–1774 (1996).
[CrossRef]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Wilson, B. C.

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Yodh, A. G.

Zaccanti, G.

Zeng, F.-A.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Zubelli, J. P.

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

Appl. Opt. (8)

IEEE Trans. Biomed. Eng. (1)

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissues—I: model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

J. Math. Imag. Vision (1)

M. Schweiger, S. R. Arridge, D. T. Delpy, “Application of the finite-element method for the forward and inverse models in optical tomography,” J. Math. Imag. Vision 3, 263–283 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Med. Phys. (3)

J. C. Hebden, D. J. Hall, D. T. Delpy, “Spatial resolution performance of a time resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–209 (1995).
[CrossRef] [PubMed]

K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–701 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Med. Biol. (2)

S. R. Arridge, M. Hiraoka, M. Schweiger, “Statistical basis for the determination of optical pathlength in tissue,” Phys. Med. Biol. 40, 1539–1558 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Phys. Rev. E (1)

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon pathlength distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Science (3)

J. R. Singer, F. A. Grünbaum, P. Kohn, J. P. Zubelli, “Image reconstruction on the interior of bodies that diffuse radiation,” Science 248, 990–992 (1990).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Other (6)

H. L. Graber, J. Chang, J. Lubowsky, R. Aronson, R. L. Barbour, “Near-infrared absorption imaging of dense scattering media by steady-state diffusion tomography,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 372–386 (1993).

S. R. Arridge, M. Schweiger, D. T. Delpy, “Iterative reconstruction of near infrared absorption images,” in Inverse Problems in Scattering and Imaging, M. A. Fiddy, ed., Proc. SPIE1767, 372–383 (1992).

B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation (SPIE, Bellingham, Wash., 1995).

M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 98–102 (1995).

S. R. Arridge, M. Schweiger, M. Hiraoka, D. Delpy, “Performance of an iterative reconstruction algorithm for near infrared absorption and scatter imaging,” in Photon Migration and Imaging in Random Media and Tissues, R. R. Alfano, B. Chance, eds., Proc. SPIE1888, 360–371 (1993).

M. A. Franceschini, S. Fantini, S. A. Walker, J. S. Maier, W. W. Mantulin, E. Gratton, “Multichannel optical instrument for near-infrared imaging of tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 264–273 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Unperturbed TPSF and Jacobians calculated from Eqs. (2), (5), and (8) for a slab of thickness d = 54 mm, refractive index n = 1.56, perturbation depth z 2 = d/2, and optical coefficients of μ a = 0.01 mm−1 and μ s ′ = 1.0 mm−1.

Fig. 2
Fig. 2

Absorption contrast C A calculated from the absorption Jacobian and unperturbed TPSF shown in Fig. 1. The dashed curve represents the same contrast obtained by following the substitution given in relation (12).

Fig. 3
Fig. 3

Diffusion contrast C D calculated from the diffusion Jacobian and unperturbed TPSF shown in Fig. 1. The dashed curve represents the same contrast obtained by following the substitution given in relation (12).

Fig. 4
Fig. 4

UCL solid breast phantom.

Fig. 5
Fig. 5

Absorption perturbation amplitude image of the breast phantom. The rectangles indicate the approximate locations of the four embedded cylinders.

Fig. 6
Fig. 6

Diffusion perturbation amplitude image of the breast phantom. The rectangles indicate the approximate locations of the four embedded cylinders.

Fig. 7
Fig. 7

Mean horizontal profiles across the absorption and diffusion perturbation amplitude images.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I pert ( t ) = I hom ( t ) J A ( t ) Δ A J D ( t ) Δ D ,
I hom ( t ) = A ( μ a + μ s ) 3 / 2 ( t t 0 ) 5 / 2 exp [ μ a c ( t t 0 ) ] n = 1 n = { z exp [ ( z ) 2 4 β ] z + exp [ ( z + ) 2 4 β ] } ,
β = 1 D c ( t t 0 ) = 3 ( μ a + μ s ) c ( t t 0 ) ,
z ± = ( 2 n + 1 ) d ± 1 μ s .
J A ( t ) = β 3 / 2 exp [ μ a c ( t t 0 ) ] m = n = 0 [ X ( x + , y + ) X ( x , y + ) + X ( x , y ) X ( x + , y ) ] ,
X ( x , y ) = [ 1 y 2 + ( x + y ) 2 2 x y β ] exp [ ( x + y ) 2 4 β ] ,
x ± = 2 m d + z 2 ± 1 μ s ,
y ± = ( 2 n + 1 ) d ± z 2 .
J D ( t ) = exp [ μ a c ( t t 0 ) ] m = n = 0 { x + [ T ( x + , y ) T ( x + , y + ) ] + x [ T ( x , y + ) T ( x , y ) ] + y + ( m | m | ) [ W ( x + , y + ) W ( x , y + ) ] + y ( m | m | ) × [ W ( x , y ) W ( x + , y ) ] } ,
T ( x , y ) = [ ( x + y ) 3 2 ( x y ) 2 β 7 / 2 + ( 1 x 3 + 1 y 3 ) β 5 / 2 ] × exp [ ( x + y ) 2 4 β ] ,
W ( x , y ) = { ( ( x + y ) 4 4 x y 2 ) β 9 / 2 + [ ( x + y ) 2 ( 3 x 2 2 x y + y 2 ) 2 x 2 y 3 ] β 7 / 2 + ( 3 x y 4 ) β 5 / 2 } exp [ ( x + y ) 2 4 β ] .
C P ( t ) = J P ( t ) I hom ( t ) .
t t 0 t t 0 + 1 c μ s .

Metrics