Abstract

We describe a sensitive and inexpensive vibrometer based on optical feedback by diffuse scattering to a single-mode diode laser. Fluctuations in the diode laser’s operating frequency that are due to scattered light from a vibrating surface are used to detect the amplitude and frequency of surface vibrations. An additional physical vibration of the laser provides an absolute amplitude calibration. The fundamental bandwidth is determined by the laser response time of roughly 10−9 s. A noise floor of 0.23 nm/Hz1/2 at 30 kHz with 5 × 10−5 of the incident light returning is demonstrated. This instrument provides an inexpensive and sensitive method of noncontact measurement in solid materials with low or uneven reflectivity. It can be used as a vibration or velocity sensor.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Anderson, “Complex tests exploit laser technology,” Laser Focus World71–78 (July1994).
  2. J. P. Nokes, G. L. Cloud, “The Application of Three Interferometric Techniques to the NDE of Composite Materials,” in Interferometry VI: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE2004, 18–26 (1993).
  3. P. Sriram, J. I. Craig, S. Hanagud, “Scanning laser Doppler techniques for vibration testing,” Exp. Tech. Phys., 21–26 (Nov./Dec.1992).
  4. M. Samuels, S. Patterson, J. Eppstein, R. Fowler, “Low cost, handheld lidar system for automotive speed detection and law,” in Laser Radar VII: Advanced Technology for Applications, R. J. Becherer, ed., Proc. SPIE1633, 147–159 (1992).
  5. A. R. Duggal, C. P. Yakymyshyn, D. F. Fobare, D. C. Hurley, “Optical detection of ultrasound with a microchip laser,” Opt. Lett. 19, 755–757 (1994).
    [CrossRef] [PubMed]
  6. D. J. Anderson, J. D. Valera, J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
    [CrossRef]
  7. P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
    [CrossRef] [PubMed]
  8. D. A. Oursler, J. W. Wagner, “Full-field vibrometry using a Fabry–Perot e′talon interferometer,” Appl. Opt. 31, 7301–7308 (1992).
    [CrossRef] [PubMed]
  9. K.-L. Deng, J. Wang, “Nanometer-resolution distance measurement with a noninterferometric method,” Appl. Opt. 33, 113–116 (1994).
    [CrossRef] [PubMed]
  10. Sun Yusheng, Zhang ZiDong, Cai Kanze, “Improvements in a laser heterodyne vibrometer,” Rev. Sci. Instrum. 63, 2974–2976 (1992).
    [CrossRef]
  11. J. Kato, N. Kikuchi, I. Yamaguchi, S. Ozono, “Optical feedback displacement sensor using a laser diode and its performance improvement,” Meas. Sci. Technol. 6, 45–52 (1995).
    [CrossRef]
  12. S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
    [CrossRef]
  13. E. T. Shimizu, “Directional discrimination in the self-mixing type laser Doppler velocimeter,” Appl. Opt. 26, 4541–4544 (1987).
    [CrossRef] [PubMed]
  14. R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
    [CrossRef]
  15. D. Lenstra, J. S. Cohen, “Feedback noise in single-mode semiconductor lasers,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 245–258 (1990).
  16. M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers—An Overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
    [CrossRef]
  17. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  18. T. W. Hänsch, B. Coullaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [CrossRef]
  19. M. Imai, K. Kawakita, “Optical-heterodyne displacement measurement using a frequency-ramped laser diode,” Opt. Commun. 78, 113–117 (1990).
    [CrossRef]

1995 (2)

J. Kato, N. Kikuchi, I. Yamaguchi, S. Ozono, “Optical feedback displacement sensor using a laser diode and its performance improvement,” Meas. Sci. Technol. 6, 45–52 (1995).
[CrossRef]

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
[CrossRef]

1994 (3)

1993 (1)

D. J. Anderson, J. D. Valera, J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

1992 (3)

P. Sriram, J. I. Craig, S. Hanagud, “Scanning laser Doppler techniques for vibration testing,” Exp. Tech. Phys., 21–26 (Nov./Dec.1992).

Sun Yusheng, Zhang ZiDong, Cai Kanze, “Improvements in a laser heterodyne vibrometer,” Rev. Sci. Instrum. 63, 2974–2976 (1992).
[CrossRef]

D. A. Oursler, J. W. Wagner, “Full-field vibrometry using a Fabry–Perot e′talon interferometer,” Appl. Opt. 31, 7301–7308 (1992).
[CrossRef] [PubMed]

1991 (1)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

1990 (1)

M. Imai, K. Kawakita, “Optical-heterodyne displacement measurement using a frequency-ramped laser diode,” Opt. Commun. 78, 113–117 (1990).
[CrossRef]

1988 (1)

P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
[CrossRef] [PubMed]

1987 (2)

E. T. Shimizu, “Directional discrimination in the self-mixing type laser Doppler velocimeter,” Appl. Opt. 26, 4541–4544 (1987).
[CrossRef] [PubMed]

M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers—An Overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
[CrossRef]

1980 (2)

T. W. Hänsch, B. Coullaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Anderson, D. J.

D. J. Anderson, J. D. Valera, J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

Anderson, S. G.

S. G. Anderson, “Complex tests exploit laser technology,” Laser Focus World71–78 (July1994).

Buus, J.

M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers—An Overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
[CrossRef]

Cloud, G. L.

J. P. Nokes, G. L. Cloud, “The Application of Three Interferometric Techniques to the NDE of Composite Materials,” in Interferometry VI: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE2004, 18–26 (1993).

Cohen, J. S.

D. Lenstra, J. S. Cohen, “Feedback noise in single-mode semiconductor lasers,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 245–258 (1990).

Coullaud, B.

T. W. Hänsch, B. Coullaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Craig, J. I.

P. Sriram, J. I. Craig, S. Hanagud, “Scanning laser Doppler techniques for vibration testing,” Exp. Tech. Phys., 21–26 (Nov./Dec.1992).

de Groot, P. J.

P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
[CrossRef] [PubMed]

Deng, K.-L.

Donati, S.

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
[CrossRef]

Duggal, A. R.

Eppstein, J.

M. Samuels, S. Patterson, J. Eppstein, R. Fowler, “Low cost, handheld lidar system for automotive speed detection and law,” in Laser Radar VII: Advanced Technology for Applications, R. J. Becherer, ed., Proc. SPIE1633, 147–159 (1992).

Fobare, D. F.

Fowler, R.

M. Samuels, S. Patterson, J. Eppstein, R. Fowler, “Low cost, handheld lidar system for automotive speed detection and law,” in Laser Radar VII: Advanced Technology for Applications, R. J. Becherer, ed., Proc. SPIE1633, 147–159 (1992).

Gallatin, G. M.

P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
[CrossRef] [PubMed]

Giuliani, G.

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
[CrossRef]

Hanagud, S.

P. Sriram, J. I. Craig, S. Hanagud, “Scanning laser Doppler techniques for vibration testing,” Exp. Tech. Phys., 21–26 (Nov./Dec.1992).

Hänsch, T. W.

T. W. Hänsch, B. Coullaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Hurley, D. C.

Imai, M.

M. Imai, K. Kawakita, “Optical-heterodyne displacement measurement using a frequency-ramped laser diode,” Opt. Commun. 78, 113–117 (1990).
[CrossRef]

Jones, J. D. C.

D. J. Anderson, J. D. Valera, J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

Kanze, Cai

Sun Yusheng, Zhang ZiDong, Cai Kanze, “Improvements in a laser heterodyne vibrometer,” Rev. Sci. Instrum. 63, 2974–2976 (1992).
[CrossRef]

Kato, J.

J. Kato, N. Kikuchi, I. Yamaguchi, S. Ozono, “Optical feedback displacement sensor using a laser diode and its performance improvement,” Meas. Sci. Technol. 6, 45–52 (1995).
[CrossRef]

Kawakita, K.

M. Imai, K. Kawakita, “Optical-heterodyne displacement measurement using a frequency-ramped laser diode,” Opt. Commun. 78, 113–117 (1990).
[CrossRef]

Kikuchi, N.

J. Kato, N. Kikuchi, I. Yamaguchi, S. Ozono, “Optical feedback displacement sensor using a laser diode and its performance improvement,” Meas. Sci. Technol. 6, 45–52 (1995).
[CrossRef]

Kobayashi, K.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Lang, R.

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

Lenstra, D.

D. Lenstra, J. S. Cohen, “Feedback noise in single-mode semiconductor lasers,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 245–258 (1990).

Macomber, S. H.

P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
[CrossRef] [PubMed]

Merlo, S.

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
[CrossRef]

Nokes, J. P.

J. P. Nokes, G. L. Cloud, “The Application of Three Interferometric Techniques to the NDE of Composite Materials,” in Interferometry VI: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE2004, 18–26 (1993).

Osinski, M.

M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers—An Overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
[CrossRef]

Oursler, D. A.

Ozono, S.

J. Kato, N. Kikuchi, I. Yamaguchi, S. Ozono, “Optical feedback displacement sensor using a laser diode and its performance improvement,” Meas. Sci. Technol. 6, 45–52 (1995).
[CrossRef]

Patterson, S.

M. Samuels, S. Patterson, J. Eppstein, R. Fowler, “Low cost, handheld lidar system for automotive speed detection and law,” in Laser Radar VII: Advanced Technology for Applications, R. J. Becherer, ed., Proc. SPIE1633, 147–159 (1992).

Samuels, M.

M. Samuels, S. Patterson, J. Eppstein, R. Fowler, “Low cost, handheld lidar system for automotive speed detection and law,” in Laser Radar VII: Advanced Technology for Applications, R. J. Becherer, ed., Proc. SPIE1633, 147–159 (1992).

Shimizu, E. T.

Sriram, P.

P. Sriram, J. I. Craig, S. Hanagud, “Scanning laser Doppler techniques for vibration testing,” Exp. Tech. Phys., 21–26 (Nov./Dec.1992).

Valera, J. D.

D. J. Anderson, J. D. Valera, J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

Wagner, J. W.

Wang, J.

Wieman, C. E.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Yakymyshyn, C. P.

Yamaguchi, I.

J. Kato, N. Kikuchi, I. Yamaguchi, S. Ozono, “Optical feedback displacement sensor using a laser diode and its performance improvement,” Meas. Sci. Technol. 6, 45–52 (1995).
[CrossRef]

Yusheng, Sun

Sun Yusheng, Zhang ZiDong, Cai Kanze, “Improvements in a laser heterodyne vibrometer,” Rev. Sci. Instrum. 63, 2974–2976 (1992).
[CrossRef]

ZiDong, Zhang

Sun Yusheng, Zhang ZiDong, Cai Kanze, “Improvements in a laser heterodyne vibrometer,” Rev. Sci. Instrum. 63, 2974–2976 (1992).
[CrossRef]

Appl. Opt. (1)

P. J. de Groot, G. M. Gallatin, S. H. Macomber, “Ranging and velocimetry signal generation in a backscatter-modulated laser diode,” Appl. Opt. 27, 4475–4480 (1988).
[CrossRef] [PubMed]

Appl. Opt. (3)

Exp. Tech. Phys. (1)

P. Sriram, J. I. Craig, S. Hanagud, “Scanning laser Doppler techniques for vibration testing,” Exp. Tech. Phys., 21–26 (Nov./Dec.1992).

IEEE J. Quantum Electron. (1)

R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. QE-16, 347–355 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Osinski, J. Buus, “Linewidth broadening factor in semiconductor lasers—An Overview,” IEEE J. Quantum Electron. QE-23, 9–29 (1987).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Donati, G. Giuliani, S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron. 31, 113–119 (1995).
[CrossRef]

Laser Focus World (1)

S. G. Anderson, “Complex tests exploit laser technology,” Laser Focus World71–78 (July1994).

Meas. Sci. Technol. (1)

J. Kato, N. Kikuchi, I. Yamaguchi, S. Ozono, “Optical feedback displacement sensor using a laser diode and its performance improvement,” Meas. Sci. Technol. 6, 45–52 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

D. J. Anderson, J. D. Valera, J. D. C. Jones, “Electronic speckle pattern interferometry using diode laser stroboscopic illumination,” Meas. Sci. Technol. 4, 982–987 (1993).
[CrossRef]

Opt. Commun. (2)

T. W. Hänsch, B. Coullaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

M. Imai, K. Kawakita, “Optical-heterodyne displacement measurement using a frequency-ramped laser diode,” Opt. Commun. 78, 113–117 (1990).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Sun Yusheng, Zhang ZiDong, Cai Kanze, “Improvements in a laser heterodyne vibrometer,” Rev. Sci. Instrum. 63, 2974–2976 (1992).
[CrossRef]

Other (3)

J. P. Nokes, G. L. Cloud, “The Application of Three Interferometric Techniques to the NDE of Composite Materials,” in Interferometry VI: Applications, R. J. Pryputniewicz, G. M. Brown, W. P. Jueptner, eds., Proc. SPIE2004, 18–26 (1993).

M. Samuels, S. Patterson, J. Eppstein, R. Fowler, “Low cost, handheld lidar system for automotive speed detection and law,” in Laser Radar VII: Advanced Technology for Applications, R. J. Becherer, ed., Proc. SPIE1633, 147–159 (1992).

D. Lenstra, J. S. Cohen, “Feedback noise in single-mode semiconductor lasers,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 245–258 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of vibrometer. The laser diode and collimation lens were mounted in a closed box for temperature stability. The beam exited the box and was directed onto a calibrated PZT test surface. A small portion of the beam was sent to a FP cavity that was used as a frequency discriminator. The intensity of light reaching the test surface was controlled by a half-wave plate and polarizing beam splitter. A small portion of the light was sent to a p-i-n photodiode to monitor the intensity of light reaching the test surface.

Fig. 2
Fig. 2

Calibration mechanism. The whole laser was mounted on a PZT to allow physical vibration of the laser.

Fig. 3
Fig. 3

Slow laser-frequency servo. Frequency fluctuations were detected with a photodiode located behind the FP cavity. Corrections were made with small changes to the laser diode injection current.

Fig. 4
Fig. 4

Sensor signal as a function of peak-to-peak object vibration amplitude for constant L 0 and feedback power. The filled circles represent data points; their size represents the measurement uncertainty. The roll-off at larger amplitudes is expected because of the sinusoidal dependence of the signal on vibration amplitude. The dashed curve is a normalized plot of Eq. (4) with A = 49.6, λ = 775 nm; L is one half of the peak-to-peak object vibration amplitude. Note that the approximation that led to Eq. (7) is not valid for vibration amplitudes for which b ≫ λ/4π.

Fig. 5
Fig. 5

Oscilloscope signal obtained while the test object is vibrated with an amplitude greater than λ/2. The top trace is the ramp signal sent to the test PZT. The bottom trace is the sensor signal. The signal is sinusoidal, as expected.

Fig. 6
Fig. 6

Sensor signal as a function of feedback power for constant L 0 and object-vibration amplitude. The dashed curve is a normalized plot of Eq. (2) with C equal to 4870 × fext 1/2. The filled circles represent the data points; their size represents the measurement uncertainty. The data fit the predicted fext 1/2 dependence well. The maximum feedback power was 0.005% of the incident light.

Fig. 7
Fig. 7

Photograph of the calibration and object peaks on the spectrum analyzer. The laser was vibrated at 6.4 kHz with an amplitude of 97 nm, and the object was vibrated at 19.4 kHz with the same amplitude.

Fig. 8
Fig. 8

Noise floor of the sensor as a function of frequency. 1 μV/Hz1/2 = 0.015 nm/Hz1/2.

Tables (1)

Tables Icon

Table 1 Values of Calibration Peak, Test Surface Peak, and Ratio of the Peaks as a Function of Intensity Returning to the Laser Diode for Constant Test-Surface and Calibration-Vibration Amplitudes a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ ωτ ext = C sin [ ϕ + ω 0 τ ext + Δ ωτ ext ] ,
C = 1 R τ L ( f ext R ) 1 / 2 ( 1 + α 2 ) 1 / 2 τ ext ,
Δ ω C τ ext cos ( ϕ + ω 0 τ ext ) .
Δ ω A sin [ 4 π L λ ] ,
Δ ω = A sin ( 4 π υ t λ + γ ) ,
L = L 0 + b sin ( ω f t ) ,
Δ ω = A 4 π b λ sin ( ω f t ) = A sin [ 4 π L 0 λ + 4 π b λ sin ( ω f t ) ] = A sin ( 4 π L 0 λ ) [ J 0 ( 4 π b λ ) + 2 J 2 ( 4 π b λ ) cos ( 2 ω f t ) + ] + A cos ( 4 π b λ ) [ 2 J 1 ( 4 π b λ ) sin ( ω f t ) + 2 J 3 ( 4 π b λ ) sin ( 3 ω f t ) + ] = A sin ( 4 π L 0 λ ) + cos ( 4 π L 0 λ ) ( 4 π b λ ) sin ( ω f t ) .
A = A 4 π b λ cos ( 4 π L 0 λ ) .
L 0 = L c + n sin ( ω s t ) ,
Δ ω = sin ( 4 π L c λ ) J 0 ( 4 π n λ ) + cos ( 4 π L c λ ) [ 4 π n λ sin ( ω s t ) + 4 π b λ sin ( ω f t ) ] sin ( 4 π L c λ ) ( 4 π λ ) 2 b n ( 1 2 ) × { cos [ ( ω f ω s ) t ] cos [ ( ω f ω s ) t ] } + sin ( 4 π L c λ ) 2 J 2 ( 4 π n λ ) cos ( 2 ω s ) + .

Metrics