Abstract

The refractive index n(λ) and the extinction coefficient k(λ) of a TiO2 film prepared by electron-beam evaporation are determined in the spectral region 1.5–5.5 eV. The transmission spectrum of the TiO2 film on a vitreous silica specimen is inverted to get the k(λ) of TiO2 in its interband transition region. Above 3.5 eV, k(λ) is used to get the coefficients of the quantum mechanically derived dispersion relation of an amorphous TiO2. These coefficients and n are used to determine n(λ). The modeling procedure is applied to spectroscopic ellipsometry data of a TiO2 film on a c-Si specimen, and the void distribution of the film is revealed. With spectroscopic ellipsometry data above the fundamental band gap, valuable information about surface roughness is obtained. The effective thickness of this rough surface layer is confirmed by an atomic force microscopy measurement.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription