Abstract

Thin films transparent to optical radiation offer polarization properties that are enhanced when the thickness of the film is an odd multiple of the quarter-wavelength. The transmission and reflection properties of a 1.16-μm-thick film of diamond realized by plasma-assisted chemical vapor deposition have been studied at 10.6 μm. A compact polarizer built with four films at a Brewster angle revealed an extinction ratio of better than 1:1000 of the S polarization. The interest in optics in which parasitic-reflected or transmitted beams do not exist is pointed out. The high damage threshold of diamonds opens the possibility of controlling the polarization characteristics of high-power lasers used, for example, for soldering and cutting applications.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. V. Spitsyn, L. L. Bouilov, B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces,” J. Cryst. Growth 52, 219–226 (1981).
    [CrossRef]
  2. J. L. Davidson, D. R. Wur, W. P. Kang, D. Kinser, D. V. Kerns, J. P. Wang, Y. C. Ling, “Microelectronic pressure sensor with diamond piezoresistors on diamond diaphragm,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 693–696.
  3. S. Shikata, H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, N. Fujimori, “2.5 GHz SAW bandpass filter using polycrystalline diamond,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 697–700.
  4. H. Windischman, G. F. Epps, “Properties of diamond membranes for X-ray lithography,” J. Appl. Phys. 68, 5665–5672 (1990).
    [CrossRef]
  5. A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, Z. Z. Wang, “Diamond deposition in a bell jar reactor: influence of the plasma and substrate parameters on the microstructure and the growth rate,” Diamond Related Mater. 2, 417–424 (1993); M. F. Ravet, A. Gicquel, E. Anger, Z. Z. Wang, Y. Chen, F. Rousseaux, “Realization of x-ray lithography masks based on diamond membranes,” Mater. Res. Symp. Proc. 306, 103–109 (1993).
    [CrossRef]
  6. E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).
  7. S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
    [CrossRef]
  8. C. Vivensang, L. Ferlazzo-Manin, M. F. Ravet, F. Rousseaux, G. Turban, A. Gicquel, “Surface smoothing of diamond membranes by reactive ion etching processes,” Diamond Related Mater. 5, 840–844 (1996).
    [CrossRef]
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1987), Chap. 1, p. 40.
  10. P. Taborek, “Optical properties of microcrystalline CVD diamond,” in Window and Dome Technologies and Materials, P. Klocek, ed., Proc. SPIE1112, 205–211 (1989).
  11. K. A. Snail, “Growth, processing and properties of CVD diamond for optical applications,” Opt. Mater. 1, 235–258 (1992).
    [CrossRef]
  12. S. Albin, A. D. Cropper, L. C. Watkins, C. E. Byvik, A. M. Buoncristiani, “Laser damage threshold of diamond films,” Opt. Eng. 28, 281–285 (1989).
  13. J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” J. Appl. Phys. 71, 5353–5361 (1992).
    [CrossRef]
  14. C. Chardonnet, “Dispositif optique sensible à la polarization,” French patent93-15702 (28December1993).

1996 (2)

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

C. Vivensang, L. Ferlazzo-Manin, M. F. Ravet, F. Rousseaux, G. Turban, A. Gicquel, “Surface smoothing of diamond membranes by reactive ion etching processes,” Diamond Related Mater. 5, 840–844 (1996).
[CrossRef]

1995 (1)

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

1993 (1)

A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, Z. Z. Wang, “Diamond deposition in a bell jar reactor: influence of the plasma and substrate parameters on the microstructure and the growth rate,” Diamond Related Mater. 2, 417–424 (1993); M. F. Ravet, A. Gicquel, E. Anger, Z. Z. Wang, Y. Chen, F. Rousseaux, “Realization of x-ray lithography masks based on diamond membranes,” Mater. Res. Symp. Proc. 306, 103–109 (1993).
[CrossRef]

1992 (2)

K. A. Snail, “Growth, processing and properties of CVD diamond for optical applications,” Opt. Mater. 1, 235–258 (1992).
[CrossRef]

J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” J. Appl. Phys. 71, 5353–5361 (1992).
[CrossRef]

1990 (1)

H. Windischman, G. F. Epps, “Properties of diamond membranes for X-ray lithography,” J. Appl. Phys. 68, 5665–5672 (1990).
[CrossRef]

1989 (1)

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Byvik, A. M. Buoncristiani, “Laser damage threshold of diamond films,” Opt. Eng. 28, 281–285 (1989).

1981 (1)

B. V. Spitsyn, L. L. Bouilov, B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces,” J. Cryst. Growth 52, 219–226 (1981).
[CrossRef]

Albin, S.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Byvik, A. M. Buoncristiani, “Laser damage threshold of diamond films,” Opt. Eng. 28, 281–285 (1989).

Anger, E.

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, Z. Z. Wang, “Diamond deposition in a bell jar reactor: influence of the plasma and substrate parameters on the microstructure and the growth rate,” Diamond Related Mater. 2, 417–424 (1993); M. F. Ravet, A. Gicquel, E. Anger, Z. Z. Wang, Y. Chen, F. Rousseaux, “Realization of x-ray lithography masks based on diamond membranes,” Mater. Res. Symp. Proc. 306, 103–109 (1993).
[CrossRef]

Bacon, B.

J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” J. Appl. Phys. 71, 5353–5361 (1992).
[CrossRef]

Banholzer, W.

J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” J. Appl. Phys. 71, 5353–5361 (1992).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1987), Chap. 1, p. 40.

Bouchier, D.

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

Bouilov, L. L.

B. V. Spitsyn, L. L. Bouilov, B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces,” J. Cryst. Growth 52, 219–226 (1981).
[CrossRef]

Buoncristiani, A. M.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Byvik, A. M. Buoncristiani, “Laser damage threshold of diamond films,” Opt. Eng. 28, 281–285 (1989).

Byvik, C. E.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Byvik, A. M. Buoncristiani, “Laser damage threshold of diamond films,” Opt. Eng. 28, 281–285 (1989).

Chardonnet, C.

C. Chardonnet, “Dispositif optique sensible à la polarization,” French patent93-15702 (28December1993).

Cropper, A. D.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Byvik, A. M. Buoncristiani, “Laser damage threshold of diamond films,” Opt. Eng. 28, 281–285 (1989).

Davidson, J. L.

J. L. Davidson, D. R. Wur, W. P. Kang, D. Kinser, D. V. Kerns, J. P. Wang, Y. C. Ling, “Microelectronic pressure sensor with diamond piezoresistors on diamond diaphragm,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 693–696.

Derjaguin, B. V.

B. V. Spitsyn, L. L. Bouilov, B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces,” J. Cryst. Growth 52, 219–226 (1981).
[CrossRef]

Epps, G. F.

H. Windischman, G. F. Epps, “Properties of diamond membranes for X-ray lithography,” J. Appl. Phys. 68, 5665–5672 (1990).
[CrossRef]

Fabre, D.

A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, Z. Z. Wang, “Diamond deposition in a bell jar reactor: influence of the plasma and substrate parameters on the microstructure and the growth rate,” Diamond Related Mater. 2, 417–424 (1993); M. F. Ravet, A. Gicquel, E. Anger, Z. Z. Wang, Y. Chen, F. Rousseaux, “Realization of x-ray lithography masks based on diamond membranes,” Mater. Res. Symp. Proc. 306, 103–109 (1993).
[CrossRef]

Ferlazzo-Manin, L.

C. Vivensang, L. Ferlazzo-Manin, M. F. Ravet, F. Rousseaux, G. Turban, A. Gicquel, “Surface smoothing of diamond membranes by reactive ion etching processes,” Diamond Related Mater. 5, 840–844 (1996).
[CrossRef]

Fournier, D.

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

Fujii, S.

S. Shikata, H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, N. Fujimori, “2.5 GHz SAW bandpass filter using polycrystalline diamond,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 697–700.

Fujimori, N.

S. Shikata, H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, N. Fujimori, “2.5 GHz SAW bandpass filter using polycrystalline diamond,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 697–700.

Gicquel, A.

C. Vivensang, L. Ferlazzo-Manin, M. F. Ravet, F. Rousseaux, G. Turban, A. Gicquel, “Surface smoothing of diamond membranes by reactive ion etching processes,” Diamond Related Mater. 5, 840–844 (1996).
[CrossRef]

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, Z. Z. Wang, “Diamond deposition in a bell jar reactor: influence of the plasma and substrate parameters on the microstructure and the growth rate,” Diamond Related Mater. 2, 417–424 (1993); M. F. Ravet, A. Gicquel, E. Anger, Z. Z. Wang, Y. Chen, F. Rousseaux, “Realization of x-ray lithography masks based on diamond membranes,” Mater. Res. Symp. Proc. 306, 103–109 (1993).
[CrossRef]

Graebner, J. E.

J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” J. Appl. Phys. 71, 5353–5361 (1992).
[CrossRef]

Hachigo, A.

S. Shikata, H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, N. Fujimori, “2.5 GHz SAW bandpass filter using polycrystalline diamond,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 697–700.

Higaki, K.

S. Shikata, H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, N. Fujimori, “2.5 GHz SAW bandpass filter using polycrystalline diamond,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 697–700.

Illias, S.

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

Jin, S.

J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” J. Appl. Phys. 71, 5353–5361 (1992).
[CrossRef]

Kammlott, G. W.

J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” J. Appl. Phys. 71, 5353–5361 (1992).
[CrossRef]

Kang, W. P.

J. L. Davidson, D. R. Wur, W. P. Kang, D. Kinser, D. V. Kerns, J. P. Wang, Y. C. Ling, “Microelectronic pressure sensor with diamond piezoresistors on diamond diaphragm,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 693–696.

Kerns, D. V.

J. L. Davidson, D. R. Wur, W. P. Kang, D. Kinser, D. V. Kerns, J. P. Wang, Y. C. Ling, “Microelectronic pressure sensor with diamond piezoresistors on diamond diaphragm,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 693–696.

Kinser, D.

J. L. Davidson, D. R. Wur, W. P. Kang, D. Kinser, D. V. Kerns, J. P. Wang, Y. C. Ling, “Microelectronic pressure sensor with diamond piezoresistors on diamond diaphragm,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 693–696.

Ling, Y. C.

J. L. Davidson, D. R. Wur, W. P. Kang, D. Kinser, D. V. Kerns, J. P. Wang, Y. C. Ling, “Microelectronic pressure sensor with diamond piezoresistors on diamond diaphragm,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 693–696.

Moller, P.

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

Nakahata, H.

S. Shikata, H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, N. Fujimori, “2.5 GHz SAW bandpass filter using polycrystalline diamond,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 697–700.

Pascallon, J.

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

Perrière, J.

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

Plamann, K.

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

Ravet, M. F.

C. Vivensang, L. Ferlazzo-Manin, M. F. Ravet, F. Rousseaux, G. Turban, A. Gicquel, “Surface smoothing of diamond membranes by reactive ion etching processes,” Diamond Related Mater. 5, 840–844 (1996).
[CrossRef]

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, Z. Z. Wang, “Diamond deposition in a bell jar reactor: influence of the plasma and substrate parameters on the microstructure and the growth rate,” Diamond Related Mater. 2, 417–424 (1993); M. F. Ravet, A. Gicquel, E. Anger, Z. Z. Wang, Y. Chen, F. Rousseaux, “Realization of x-ray lithography masks based on diamond membranes,” Mater. Res. Symp. Proc. 306, 103–109 (1993).
[CrossRef]

Rossi, F.

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

Rousseaux, F.

C. Vivensang, L. Ferlazzo-Manin, M. F. Ravet, F. Rousseaux, G. Turban, A. Gicquel, “Surface smoothing of diamond membranes by reactive ion etching processes,” Diamond Related Mater. 5, 840–844 (1996).
[CrossRef]

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

Scatena, G.

A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, Z. Z. Wang, “Diamond deposition in a bell jar reactor: influence of the plasma and substrate parameters on the microstructure and the growth rate,” Diamond Related Mater. 2, 417–424 (1993); M. F. Ravet, A. Gicquel, E. Anger, Z. Z. Wang, Y. Chen, F. Rousseaux, “Realization of x-ray lithography masks based on diamond membranes,” Mater. Res. Symp. Proc. 306, 103–109 (1993).
[CrossRef]

Seibles, L.

J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” J. Appl. Phys. 71, 5353–5361 (1992).
[CrossRef]

Sene, G.

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

Shikata, S.

S. Shikata, H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, N. Fujimori, “2.5 GHz SAW bandpass filter using polycrystalline diamond,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 697–700.

Snail, K. A.

K. A. Snail, “Growth, processing and properties of CVD diamond for optical applications,” Opt. Mater. 1, 235–258 (1992).
[CrossRef]

Spitsyn, B. V.

B. V. Spitsyn, L. L. Bouilov, B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces,” J. Cryst. Growth 52, 219–226 (1981).
[CrossRef]

Stambouli, V.

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

Taborek, P.

P. Taborek, “Optical properties of microcrystalline CVD diamond,” in Window and Dome Technologies and Materials, P. Klocek, ed., Proc. SPIE1112, 205–211 (1989).

Tardieu, A.

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

Turban, G.

C. Vivensang, L. Ferlazzo-Manin, M. F. Ravet, F. Rousseaux, G. Turban, A. Gicquel, “Surface smoothing of diamond membranes by reactive ion etching processes,” Diamond Related Mater. 5, 840–844 (1996).
[CrossRef]

Vivensang, C.

C. Vivensang, L. Ferlazzo-Manin, M. F. Ravet, F. Rousseaux, G. Turban, A. Gicquel, “Surface smoothing of diamond membranes by reactive ion etching processes,” Diamond Related Mater. 5, 840–844 (1996).
[CrossRef]

Wang, J. P.

J. L. Davidson, D. R. Wur, W. P. Kang, D. Kinser, D. V. Kerns, J. P. Wang, Y. C. Ling, “Microelectronic pressure sensor with diamond piezoresistors on diamond diaphragm,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 693–696.

Wang, Z. Z.

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, Z. Z. Wang, “Diamond deposition in a bell jar reactor: influence of the plasma and substrate parameters on the microstructure and the growth rate,” Diamond Related Mater. 2, 417–424 (1993); M. F. Ravet, A. Gicquel, E. Anger, Z. Z. Wang, Y. Chen, F. Rousseaux, “Realization of x-ray lithography masks based on diamond membranes,” Mater. Res. Symp. Proc. 306, 103–109 (1993).
[CrossRef]

Watkins, L. C.

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Byvik, A. M. Buoncristiani, “Laser damage threshold of diamond films,” Opt. Eng. 28, 281–285 (1989).

Windischman, H.

H. Windischman, G. F. Epps, “Properties of diamond membranes for X-ray lithography,” J. Appl. Phys. 68, 5665–5672 (1990).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1987), Chap. 1, p. 40.

Wur, D. R.

J. L. Davidson, D. R. Wur, W. P. Kang, D. Kinser, D. V. Kerns, J. P. Wang, Y. C. Ling, “Microelectronic pressure sensor with diamond piezoresistors on diamond diaphragm,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 693–696.

Diamond Related Mater. (3)

A. Gicquel, E. Anger, M. F. Ravet, D. Fabre, G. Scatena, Z. Z. Wang, “Diamond deposition in a bell jar reactor: influence of the plasma and substrate parameters on the microstructure and the growth rate,” Diamond Related Mater. 2, 417–424 (1993); M. F. Ravet, A. Gicquel, E. Anger, Z. Z. Wang, Y. Chen, F. Rousseaux, “Realization of x-ray lithography masks based on diamond membranes,” Mater. Res. Symp. Proc. 306, 103–109 (1993).
[CrossRef]

S. Illias, G. Sene, P. Moller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M. F. Ravet, “Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle,” Diamond Related Mater. 5, 835–839 (1996).
[CrossRef]

C. Vivensang, L. Ferlazzo-Manin, M. F. Ravet, F. Rousseaux, G. Turban, A. Gicquel, “Surface smoothing of diamond membranes by reactive ion etching processes,” Diamond Related Mater. 5, 840–844 (1996).
[CrossRef]

J. Appl. Phys. (2)

H. Windischman, G. F. Epps, “Properties of diamond membranes for X-ray lithography,” J. Appl. Phys. 68, 5665–5672 (1990).
[CrossRef]

J. E. Graebner, S. Jin, G. W. Kammlott, B. Bacon, L. Seibles, W. Banholzer, “Anisotropic thermal conductivity in chemical vapor deposition diamond,” J. Appl. Phys. 71, 5353–5361 (1992).
[CrossRef]

J. Cryst. Growth (1)

B. V. Spitsyn, L. L. Bouilov, B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces,” J. Cryst. Growth 52, 219–226 (1981).
[CrossRef]

Opt. Eng. (1)

S. Albin, A. D. Cropper, L. C. Watkins, C. E. Byvik, A. M. Buoncristiani, “Laser damage threshold of diamond films,” Opt. Eng. 28, 281–285 (1989).

Opt. Mater. (1)

K. A. Snail, “Growth, processing and properties of CVD diamond for optical applications,” Opt. Mater. 1, 235–258 (1992).
[CrossRef]

Vide Sci. Tech. Appl. (1)

E. Anger, A. Gicquel, M. F. Ravet, Z. Z. Wang, F. Rousseaux, J. Perrière, F. Rossi, D. Fournier, K. Plamann, “Optimisation de la fabrication de films et de membranes en diamant par méthode CVD assistée par plasma microonde,” Vide Sci. Tech. Appl. 51, (276) revêtements 2, 139–164, ed., Société Française du Vide (1995).

Other (5)

J. L. Davidson, D. R. Wur, W. P. Kang, D. Kinser, D. V. Kerns, J. P. Wang, Y. C. Ling, “Microelectronic pressure sensor with diamond piezoresistors on diamond diaphragm,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 693–696.

S. Shikata, H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, N. Fujimori, “2.5 GHz SAW bandpass filter using polycrystalline diamond,” in Advances in New Diamond Science and Technology, S. Saito, N. Fujimori, O. Fukugana, K. Kobashi, M. Yoshikawa, eds. (MYU, Tokyo, 1994), pp. 697–700.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1987), Chap. 1, p. 40.

P. Taborek, “Optical properties of microcrystalline CVD diamond,” in Window and Dome Technologies and Materials, P. Klocek, ed., Proc. SPIE1112, 205–211 (1989).

C. Chardonnet, “Dispositif optique sensible à la polarization,” French patent93-15702 (28December1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diamond membrane modeled as a plate of parallel faces. The transverse dimensions of the laser beam are very large compared with the thickness of the film. Thus the transmitted and reflected beams are the results of interferences produced inside the membrane.

Fig. 2
Fig. 2

Theoretical transmission coefficient of a diamond membrane versus thickness at λ = 10.6 μm as well as versus laser frequency for a thickness of e = 1.23 μm for normal incidence and Brewster incidence (S polarization). Absorption and dispersion are neglected. We retrieve the typical Airy curves illustrating the Fabry–Perot cavity behavior of the membrane. Note that the finesse and the free spectral range increase with the incidence angle.

Fig. 3
Fig. 3

Experimental reflection coefficients of a diamond membrane versus incidence angle at λ = 10.6 μm for both polarizations. Thickness, 1.16 μm.

Fig. 4
Fig. 4

Experimental reflection coefficients of a diamond membrane versus incidence angle at λ = 10.6 μm for both polarizations. Thickness, 1.16 μm.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E r = r 12 E 0 ; E t = t 12 E 0 ,
r 12 , P = P polarization n 2 cos θ i n 1 cos θ t n 2 cos θ i + n 1 cos θ t , r 12 , S = S polarization n 1 cos θ i n 2 cos θ t n 1 cos θ i + n 2 cos θ t ,
t 12 , P = P polarization 2 n 2 cos θ i n 2 cos θ i + n 1 cos θ t , t 12 , S = S polarization 2 n 2 cos θ i n 1 cos θ i + n 2 cos θ t .
r 12 , S = cos 2 θ i B = n 1 2 n 2 2 n 1 2 + n 2 2 .
n 1 Δ 1 = 2 n 1 e tan θ t sin θ i ,
n 2 Δ 2 = n 2 e cos θ t .
E R = E 0 { r 12 + p = 1 + t 12 t 21 r 21 2 p 1 × exp [ i k ( p n 1 Δ 1 + 2 p n 2 Δ 2 ) ] } ,
Δ = 2 n 2 Δ 2 n 1 Δ 1 = 2 n 2 e cos θ t .
E R = E 0 r 12 1 e i k Δ 1 r 12 2 e i k Δ .
r = r 12 1 e i k Δ 1 r 12 2 e i k Δ ,
t = 1 r 12 2 1 r 12 2 e i k Δ .
r P = P polarization n 2 2 cos 2 θ i n 1 2 cos 2 θ t n 2 2 cos 2 θ i + n 1 2 cos 2 θ t , r S = S polarization n 1 2 cos 2 θ i n 2 2 cos 2 θ t n 1 2 cos 2 θ i + n 2 2 cos 2 θ t ,
t P = P polarization 2 n 1 n 2 cos θ i cos θ t n 2 2 cos 2 θ i + n 1 2 cos 2 θ t , t S = S polarization 2 n 1 n 2 cos θ i cos θ t n 1 2 cos 2 θ i + n 2 2 cos 2 θ t .
θ i = 0 , r = n 2 2 n 1 2 n 2 2 + n 1 2 ; t = 2 n 1 n 2 n 2 2 + n 1 2 .
θ i = θ i B , r S = n 1 4 n 2 4 n 2 4 + n 1 4 ; t S = 2 n 1 2 n 2 2 n 2 4 + n 1 4 .
cos θ i = cos 2 θ i ; cos θ t = cos 2 θ t
θ i B = 66 4 5 ± 5 , i . e ., n = 2 . 328 ( 10 ) ,
T P = 0 , 94 ( 1 ) , T S = 0 . 00095 ( 50 ) .

Metrics