Abstract

The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. C. Vogelmann, L. O. Bjorn, “Plants as light traps,” Physiol. Plant. 68, 704–708 (1986).
    [CrossRef]
  2. D. M. Gates, Biophysical Ecology (Springer-Verlag, New York, 1980).
    [CrossRef]
  3. S. Jacquemoud, F. Baret, “prospect: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75–91 (1990).
    [CrossRef]
  4. M. M. Verstraete, B. Pinty, R. Myneni, “Understanding the biosphere from space: strategies to exploit remote sensing data,” in Physical Measurements and Signatures in Remote Sensing (Val d’Isére, France, 1994), pp. 993–1004.
  5. Y. M. Govaerts, M. M. Verstraete, “Evaluation of the capability of BRDF models to retrieve structural information on the observed target as described by a tridimensional ray tracing code,” in Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources, E. Mougin, K. J. Ranson, J. A. Smith, eds. Proc. SPIE 2314, 9–20 (1994).
  6. T. C. Vogelmann, “Plant tissue optics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 231–251 (1993).
    [CrossRef]
  7. J. Verdebout, S. Jacquemoud, G. Schmuck, “Optical properties of leaves: modelling and experimental studies,” in Imaging Spectrometry as a Tool for Environmental Observations, J. Hill, J. Mégier, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 169–191.
    [CrossRef]
  8. G. Haberlandt, “Optical sense-organs,” in Physiological Plant Anatomy, G. Haberlandt, ed. (Macmillan, London, 1914), pp. 613–631.
  9. H. Gabrys-Mizera, “Model considerations of the light conditions in noncylindrical plant cells,” Photochem. Photobiol. 24, 453–461 (1976).
    [CrossRef]
  10. R. A. Bone, D. W. Lee, J. M. Norman, “Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants,” Appl. Opt. 24, 1408–1412 (1985).
    [CrossRef] [PubMed]
  11. G. Martin, S. A. Josserand, J. F. Bornman, T. C. Volgemann, “Epidermal focussing and the light microenvironment within leaves of Medicago sativa,” Physiol. Plant. 76, 485–492 (1989).
    [CrossRef]
  12. W. A. Allen, H. W. Gausman, A. J. Richardson, “Willstatter-Stoll theory of leaf reflectance evaluated by ray tracing,” Appl. Opt. 12, 2448–2452 (1973).
    [CrossRef] [PubMed]
  13. R. Kumar, L. Silva, “Light ray tracing through a leaf cross section,” Appl. Opt. 12, 2950–2954 (1973).
    [CrossRef] [PubMed]
  14. D. F. Parkhurst, “Internal leaf structure: a three-dimensional perspective,” in On the Economy of Plant Form and Function, T. J. Givnish, ed. (Cambridge U. Press, Cambridge, U.K., 1986), pp. 215–249.
  15. T. C. Vogelmann, G. Martin, “The functional significance of palisade tissue penetration of directional versus diffuse light,” Plant Cell Environ. 16, 65–72 (1993).
    [CrossRef]
  16. D. F. Parkhurst, “Stereological methods for measuring internal leaf structure variables,” Am. J. Bot. 69, 31–39 (1982).
    [CrossRef]
  17. L. J. Gibson, M. F. Ashby, Cellular Solids, Structure and Properties (Pergamon, Oxford, 1988).
  18. H. Mohr, P. Schopfer, Plant Physiology (Springer-Verlag, Berlin, 1995).
  19. D. M. Gates, H. J. Keegan, J. C. Schleter, V. R. Weiner, “Spectral properties of plants,” Appl. Opt. 4, 11–20 (1965).
    [CrossRef]
  20. T. R. Sinclair, M. M. Schreiber, R. M. Hoffer, “Diffuse reflectance hypothesis for the pathway of solar radiation through leaves,” Agron. J. 65, 276–283 (1973).
    [CrossRef]
  21. H. K. Lichtenthaler, “Chlorophylls and carotenoids: pigments of photosynthetic biomembranes,” Methods Enzymol. 148, 350–382 (1987).
    [CrossRef]
  22. R. L. Hulbary, “The influence of air spaces on the three-dimensional shapes of cells in Elodea stems, and a comparison with pith cells of Ailanthus,” Am. J. Bot. 31, 561–580 (1944).
    [CrossRef]
  23. D. W. Thompson, On Growth and Form (Cambridge U. Press, Cambridge, U.K., 1961).
  24. J. A. Romberger, Z. Hejnowicz, J. F. Hill, Plant Structure: Function and Development (Springer-Verlag, Berlin, 1993).
  25. M. E. Mortenson, Geometric Modeling (Wiley, New York, 1985).
  26. H. T. Breece, R. A. Holmes, “Bidirectional scattering characteristics of healthy green soybeans and corn leaves in vivo,” Appl. Opt. 10, 119–127 (1971).
    [CrossRef]
  27. T. W. Brakke, J. A. Smith, J. M. Harnden, “Bidirectional scattering of light from tree leaves,” Remote Sensing Environ. 29, 175–183 (1989).
    [CrossRef]
  28. E. A. Walter-Shea, J. M. Norman, B. L. Blad, “Leaf bidirectional reflectance and transmittance in corn and soybean,” Remote Sensing Environ. 29, 161–174 (1989).
    [CrossRef]
  29. L. Grant, C. S. T. Daughtry, V. C. Vanderbilt, “Polarized and specular reflectance variation with leaf surface features,” Physiol. Plant. 88, 1–9 (1993).
    [CrossRef]
  30. S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996).
    [CrossRef]
  31. J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951).
    [CrossRef]
  32. K. F. Palmer, D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974).
    [CrossRef]
  33. T. Richter, L. Fukshansky, “Authentic in vivo absorption spectra for chlorophyll in leaves as derived from in situ and in vitro measurements,” Photochem. Photobiol. 59, 237–247 (1994).
    [CrossRef]
  34. Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sensing 28, 865–872 (1990).
    [CrossRef]
  35. K. J. Niklas, Plant Biomechanics: an Engineering Approach to Plant Form and Function (University of Chicago Press, Chicago, Ill., 1992).
  36. K. Esau, Plant Anatomy (Wiley, New York, 1965).
  37. L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
    [CrossRef]
  38. P. N. Schurhoff, “Die Plastiden,” in Handbuch der Pflanzenanatomie (Gebrüder Borntraeger, Berlin, 1924).
  39. B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, G. Schmuck, “Leaf optical properties experiment 93 (LOPEX93),” Technical Report EUR 16095 EN (European Commission, Joint Research Centre, Institute for Remote Sensing Applications, Ispra, Italy, 1995).
  40. A. J. Stamm, H. T. Sanders, “Specific gravity of the wood substance of loblolly pine as affected by chemical composition,” Tappi 49, 397–400 (1966).
  41. Y. M. Govaerts, M. M. Verstraete, “Applications of the L-systems to canopy reflectance modeling in a Monte Carlo ray tracing technique,” in Fractals in Geoscience and Remote Sensing, G. G. Wilkinson, L. Kanellopoulos, J. Mégier, eds. (Joint Research Centre of the European Commission, Ispra, Italy, 1994), pp. 211–236.
  42. M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).
  43. A. S. Glassner, “Surface physics for ray tracing,” in Introduction to Ray Tracing, A. S. Glassner, ed. (Academic, London, 1989), pp. 121–160.
  44. J. K. Ross, A. L. Marshak, “The influence of leaf orientation and the specular component of leaf reflectance on the canopy bidirectional reflectance,” Remote Sensing Environ. 27, 251–260 (1989).
    [CrossRef]
  45. D. W. Lee, “Unusual strategies of light absorption in rain-forest herbs,” in On the Economy of Plant Form and Function, T. J. Givnish, ed. (Cambridge U. Press, Cambridge, U.K., 1986), pp. 105–131.
  46. M. E. Poulson, T. C. Vogelmann, “Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of oxalis,” Plant Cell Environ. 13, 803–811 (1990).
    [CrossRef]
  47. T. C. Vogelmann, J. F. Bornman, S. Josserand, “Photo-synthetic light gradients and spectral reégime within leaves of Medicago sativa,” Philos. Trans. R. Soc. London Ser. B 323, 411–421 (1989).
    [CrossRef]
  48. T. W. Brakke, “Specular and diffuse components of radiation scattered by leaves,” Agri. Forest Meteorol. 71, 283–295 (1994).
    [CrossRef]
  49. W. A. Allen, “Transmission of isotropic light across a dielectric surface in two and three dimensions,” J. Opt. Soc. Am. 63, 664–666 (1973).
    [CrossRef]
  50. J. H. McClendon, “The micro-optics of leaves. I. Patterns of reflection from the epidermis,” Am. J. Bot. 71, 1391–1397 (1984).
    [CrossRef]
  51. T. W. Brakke, “Goniometric measurements of light scattered in the principal plane from leaves,” in International Geoscience and Remote Sensing Symposium (IEEE, New York, 1992), pp. 508–510.
  52. T. W. Brakke, W. P. Wergin, E. F. Erbe, J. M. Harnden, “Seasonal variation in the structure and red reflectance of leaves from yellow poplar, red oak, and red maple,” Remote Sensing Environ. 43, 115–130 (1993).
    [CrossRef]
  53. K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57, 1105–1114 (1967).
    [CrossRef]
  54. F. Baret, S. Jacquemoud, G. Guyot, C. Leprieur, “Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands,” Remote Sensing Environ. 41, 133–142 (1992).
    [CrossRef]
  55. F. M. Danson, M. D. Steven, T. J. Malthus, J. A. Clark, “High-spectral resolution data for determining leaf water content,” Int. J. Remote Sensing 13, 461–470 (1992).
    [CrossRef]

1996 (1)

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996).
[CrossRef]

1994 (2)

T. Richter, L. Fukshansky, “Authentic in vivo absorption spectra for chlorophyll in leaves as derived from in situ and in vitro measurements,” Photochem. Photobiol. 59, 237–247 (1994).
[CrossRef]

T. W. Brakke, “Specular and diffuse components of radiation scattered by leaves,” Agri. Forest Meteorol. 71, 283–295 (1994).
[CrossRef]

1993 (5)

T. W. Brakke, W. P. Wergin, E. F. Erbe, J. M. Harnden, “Seasonal variation in the structure and red reflectance of leaves from yellow poplar, red oak, and red maple,” Remote Sensing Environ. 43, 115–130 (1993).
[CrossRef]

L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
[CrossRef]

L. Grant, C. S. T. Daughtry, V. C. Vanderbilt, “Polarized and specular reflectance variation with leaf surface features,” Physiol. Plant. 88, 1–9 (1993).
[CrossRef]

T. C. Vogelmann, “Plant tissue optics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 231–251 (1993).
[CrossRef]

T. C. Vogelmann, G. Martin, “The functional significance of palisade tissue penetration of directional versus diffuse light,” Plant Cell Environ. 16, 65–72 (1993).
[CrossRef]

1992 (2)

F. Baret, S. Jacquemoud, G. Guyot, C. Leprieur, “Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands,” Remote Sensing Environ. 41, 133–142 (1992).
[CrossRef]

F. M. Danson, M. D. Steven, T. J. Malthus, J. A. Clark, “High-spectral resolution data for determining leaf water content,” Int. J. Remote Sensing 13, 461–470 (1992).
[CrossRef]

1990 (3)

M. E. Poulson, T. C. Vogelmann, “Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of oxalis,” Plant Cell Environ. 13, 803–811 (1990).
[CrossRef]

S. Jacquemoud, F. Baret, “prospect: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75–91 (1990).
[CrossRef]

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sensing 28, 865–872 (1990).
[CrossRef]

1989 (5)

G. Martin, S. A. Josserand, J. F. Bornman, T. C. Volgemann, “Epidermal focussing and the light microenvironment within leaves of Medicago sativa,” Physiol. Plant. 76, 485–492 (1989).
[CrossRef]

T. W. Brakke, J. A. Smith, J. M. Harnden, “Bidirectional scattering of light from tree leaves,” Remote Sensing Environ. 29, 175–183 (1989).
[CrossRef]

E. A. Walter-Shea, J. M. Norman, B. L. Blad, “Leaf bidirectional reflectance and transmittance in corn and soybean,” Remote Sensing Environ. 29, 161–174 (1989).
[CrossRef]

T. C. Vogelmann, J. F. Bornman, S. Josserand, “Photo-synthetic light gradients and spectral reégime within leaves of Medicago sativa,” Philos. Trans. R. Soc. London Ser. B 323, 411–421 (1989).
[CrossRef]

J. K. Ross, A. L. Marshak, “The influence of leaf orientation and the specular component of leaf reflectance on the canopy bidirectional reflectance,” Remote Sensing Environ. 27, 251–260 (1989).
[CrossRef]

1987 (1)

H. K. Lichtenthaler, “Chlorophylls and carotenoids: pigments of photosynthetic biomembranes,” Methods Enzymol. 148, 350–382 (1987).
[CrossRef]

1986 (1)

T. C. Vogelmann, L. O. Bjorn, “Plants as light traps,” Physiol. Plant. 68, 704–708 (1986).
[CrossRef]

1985 (1)

1984 (1)

J. H. McClendon, “The micro-optics of leaves. I. Patterns of reflection from the epidermis,” Am. J. Bot. 71, 1391–1397 (1984).
[CrossRef]

1982 (1)

D. F. Parkhurst, “Stereological methods for measuring internal leaf structure variables,” Am. J. Bot. 69, 31–39 (1982).
[CrossRef]

1976 (1)

H. Gabrys-Mizera, “Model considerations of the light conditions in noncylindrical plant cells,” Photochem. Photobiol. 24, 453–461 (1976).
[CrossRef]

1974 (1)

1973 (4)

1971 (1)

1967 (1)

1966 (1)

A. J. Stamm, H. T. Sanders, “Specific gravity of the wood substance of loblolly pine as affected by chemical composition,” Tappi 49, 397–400 (1966).

1965 (1)

1951 (1)

1944 (1)

R. L. Hulbary, “The influence of air spaces on the three-dimensional shapes of cells in Elodea stems, and a comparison with pith cells of Ailanthus,” Am. J. Bot. 31, 561–580 (1944).
[CrossRef]

Allen, W. A.

Andreoli, G.

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996).
[CrossRef]

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, G. Schmuck, “Leaf optical properties experiment 93 (LOPEX93),” Technical Report EUR 16095 EN (European Commission, Joint Research Centre, Institute for Remote Sensing Applications, Ispra, Italy, 1995).

Ashby, M. F.

L. J. Gibson, M. F. Ashby, Cellular Solids, Structure and Properties (Pergamon, Oxford, 1988).

Baret, F.

F. Baret, S. Jacquemoud, G. Guyot, C. Leprieur, “Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands,” Remote Sensing Environ. 41, 133–142 (1992).
[CrossRef]

S. Jacquemoud, F. Baret, “prospect: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75–91 (1990).
[CrossRef]

Bjorn, L. O.

T. C. Vogelmann, L. O. Bjorn, “Plants as light traps,” Physiol. Plant. 68, 704–708 (1986).
[CrossRef]

Blad, B. L.

E. A. Walter-Shea, J. M. Norman, B. L. Blad, “Leaf bidirectional reflectance and transmittance in corn and soybean,” Remote Sensing Environ. 29, 161–174 (1989).
[CrossRef]

Bone, R. A.

Born, M.

M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).

Bornman, J. F.

T. C. Vogelmann, J. F. Bornman, S. Josserand, “Photo-synthetic light gradients and spectral reégime within leaves of Medicago sativa,” Philos. Trans. R. Soc. London Ser. B 323, 411–421 (1989).
[CrossRef]

G. Martin, S. A. Josserand, J. F. Bornman, T. C. Volgemann, “Epidermal focussing and the light microenvironment within leaves of Medicago sativa,” Physiol. Plant. 76, 485–492 (1989).
[CrossRef]

Brakke, T. W.

T. W. Brakke, “Specular and diffuse components of radiation scattered by leaves,” Agri. Forest Meteorol. 71, 283–295 (1994).
[CrossRef]

T. W. Brakke, W. P. Wergin, E. F. Erbe, J. M. Harnden, “Seasonal variation in the structure and red reflectance of leaves from yellow poplar, red oak, and red maple,” Remote Sensing Environ. 43, 115–130 (1993).
[CrossRef]

T. W. Brakke, J. A. Smith, J. M. Harnden, “Bidirectional scattering of light from tree leaves,” Remote Sensing Environ. 29, 175–183 (1989).
[CrossRef]

T. W. Brakke, “Goniometric measurements of light scattered in the principal plane from leaves,” in International Geoscience and Remote Sensing Symposium (IEEE, New York, 1992), pp. 508–510.

Breece, H. T.

Clark, J. A.

F. M. Danson, M. D. Steven, T. J. Malthus, J. A. Clark, “High-spectral resolution data for determining leaf water content,” Int. J. Remote Sensing 13, 461–470 (1992).
[CrossRef]

Curcio, J. A.

Danson, F. M.

F. M. Danson, M. D. Steven, T. J. Malthus, J. A. Clark, “High-spectral resolution data for determining leaf water content,” Int. J. Remote Sensing 13, 461–470 (1992).
[CrossRef]

Daughtry, C. S. T.

L. Grant, C. S. T. Daughtry, V. C. Vanderbilt, “Polarized and specular reflectance variation with leaf surface features,” Physiol. Plant. 88, 1–9 (1993).
[CrossRef]

Erbe, E. F.

T. W. Brakke, W. P. Wergin, E. F. Erbe, J. M. Harnden, “Seasonal variation in the structure and red reflectance of leaves from yellow poplar, red oak, and red maple,” Remote Sensing Environ. 43, 115–130 (1993).
[CrossRef]

Esau, K.

K. Esau, Plant Anatomy (Wiley, New York, 1965).

Fukshansky, L.

T. Richter, L. Fukshansky, “Authentic in vivo absorption spectra for chlorophyll in leaves as derived from in situ and in vitro measurements,” Photochem. Photobiol. 59, 237–247 (1994).
[CrossRef]

L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
[CrossRef]

Gabrys-Mizera, H.

H. Gabrys-Mizera, “Model considerations of the light conditions in noncylindrical plant cells,” Photochem. Photobiol. 24, 453–461 (1976).
[CrossRef]

Gates, D. M.

Gausman, H. W.

Gibson, L. J.

L. J. Gibson, M. F. Ashby, Cellular Solids, Structure and Properties (Pergamon, Oxford, 1988).

Glassner, A. S.

A. S. Glassner, “Surface physics for ray tracing,” in Introduction to Ray Tracing, A. S. Glassner, ed. (Academic, London, 1989), pp. 121–160.

Govaerts, Y. M.

Y. M. Govaerts, M. M. Verstraete, “Applications of the L-systems to canopy reflectance modeling in a Monte Carlo ray tracing technique,” in Fractals in Geoscience and Remote Sensing, G. G. Wilkinson, L. Kanellopoulos, J. Mégier, eds. (Joint Research Centre of the European Commission, Ispra, Italy, 1994), pp. 211–236.

Y. M. Govaerts, M. M. Verstraete, “Evaluation of the capability of BRDF models to retrieve structural information on the observed target as described by a tridimensional ray tracing code,” in Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources, E. Mougin, K. J. Ranson, J. A. Smith, eds. Proc. SPIE 2314, 9–20 (1994).

Grant, L.

L. Grant, C. S. T. Daughtry, V. C. Vanderbilt, “Polarized and specular reflectance variation with leaf surface features,” Physiol. Plant. 88, 1–9 (1993).
[CrossRef]

Guyot, G.

F. Baret, S. Jacquemoud, G. Guyot, C. Leprieur, “Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands,” Remote Sensing Environ. 41, 133–142 (1992).
[CrossRef]

Haberlandt, G.

G. Haberlandt, “Optical sense-organs,” in Physiological Plant Anatomy, G. Haberlandt, ed. (Macmillan, London, 1914), pp. 613–631.

Harnden, J. M.

T. W. Brakke, W. P. Wergin, E. F. Erbe, J. M. Harnden, “Seasonal variation in the structure and red reflectance of leaves from yellow poplar, red oak, and red maple,” Remote Sensing Environ. 43, 115–130 (1993).
[CrossRef]

T. W. Brakke, J. A. Smith, J. M. Harnden, “Bidirectional scattering of light from tree leaves,” Remote Sensing Environ. 29, 175–183 (1989).
[CrossRef]

Hejnowicz, Z.

J. A. Romberger, Z. Hejnowicz, J. F. Hill, Plant Structure: Function and Development (Springer-Verlag, Berlin, 1993).

Hill, J. F.

J. A. Romberger, Z. Hejnowicz, J. F. Hill, Plant Structure: Function and Development (Springer-Verlag, Berlin, 1993).

Hoffer, R. M.

T. R. Sinclair, M. M. Schreiber, R. M. Hoffer, “Diffuse reflectance hypothesis for the pathway of solar radiation through leaves,” Agron. J. 65, 276–283 (1973).
[CrossRef]

Holmes, R. A.

Hosgood, B.

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996).
[CrossRef]

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, G. Schmuck, “Leaf optical properties experiment 93 (LOPEX93),” Technical Report EUR 16095 EN (European Commission, Joint Research Centre, Institute for Remote Sensing Applications, Ispra, Italy, 1995).

Hulbary, R. L.

R. L. Hulbary, “The influence of air spaces on the three-dimensional shapes of cells in Elodea stems, and a comparison with pith cells of Ailanthus,” Am. J. Bot. 31, 561–580 (1944).
[CrossRef]

Ishimaru, A.

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sensing 28, 865–872 (1990).
[CrossRef]

Jacquemoud, S.

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996).
[CrossRef]

F. Baret, S. Jacquemoud, G. Guyot, C. Leprieur, “Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands,” Remote Sensing Environ. 41, 133–142 (1992).
[CrossRef]

S. Jacquemoud, F. Baret, “prospect: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75–91 (1990).
[CrossRef]

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, G. Schmuck, “Leaf optical properties experiment 93 (LOPEX93),” Technical Report EUR 16095 EN (European Commission, Joint Research Centre, Institute for Remote Sensing Applications, Ispra, Italy, 1995).

J. Verdebout, S. Jacquemoud, G. Schmuck, “Optical properties of leaves: modelling and experimental studies,” in Imaging Spectrometry as a Tool for Environmental Observations, J. Hill, J. Mégier, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 169–191.
[CrossRef]

Josserand, S.

T. C. Vogelmann, J. F. Bornman, S. Josserand, “Photo-synthetic light gradients and spectral reégime within leaves of Medicago sativa,” Philos. Trans. R. Soc. London Ser. B 323, 411–421 (1989).
[CrossRef]

Josserand, S. A.

G. Martin, S. A. Josserand, J. F. Bornman, T. C. Volgemann, “Epidermal focussing and the light microenvironment within leaves of Medicago sativa,” Physiol. Plant. 76, 485–492 (1989).
[CrossRef]

Keegan, H. J.

Kuga, Y.

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sensing 28, 865–872 (1990).
[CrossRef]

Kumar, R.

Lee, D. W.

R. A. Bone, D. W. Lee, J. M. Norman, “Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants,” Appl. Opt. 24, 1408–1412 (1985).
[CrossRef] [PubMed]

D. W. Lee, “Unusual strategies of light absorption in rain-forest herbs,” in On the Economy of Plant Form and Function, T. J. Givnish, ed. (Cambridge U. Press, Cambridge, U.K., 1986), pp. 105–131.

Leprieur, C.

F. Baret, S. Jacquemoud, G. Guyot, C. Leprieur, “Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands,” Remote Sensing Environ. 41, 133–142 (1992).
[CrossRef]

Lichtenthaler, H. K.

H. K. Lichtenthaler, “Chlorophylls and carotenoids: pigments of photosynthetic biomembranes,” Methods Enzymol. 148, 350–382 (1987).
[CrossRef]

Ma, Q.

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sensing 28, 865–872 (1990).
[CrossRef]

Malthus, T. J.

F. M. Danson, M. D. Steven, T. J. Malthus, J. A. Clark, “High-spectral resolution data for determining leaf water content,” Int. J. Remote Sensing 13, 461–470 (1992).
[CrossRef]

Marshak, A. L.

J. K. Ross, A. L. Marshak, “The influence of leaf orientation and the specular component of leaf reflectance on the canopy bidirectional reflectance,” Remote Sensing Environ. 27, 251–260 (1989).
[CrossRef]

Martin, G.

T. C. Vogelmann, G. Martin, “The functional significance of palisade tissue penetration of directional versus diffuse light,” Plant Cell Environ. 16, 65–72 (1993).
[CrossRef]

G. Martin, S. A. Josserand, J. F. Bornman, T. C. Volgemann, “Epidermal focussing and the light microenvironment within leaves of Medicago sativa,” Physiol. Plant. 76, 485–492 (1989).
[CrossRef]

Martinez, V.

L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
[CrossRef]

McClendon, J.

L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
[CrossRef]

McClendon, J. H.

J. H. McClendon, “The micro-optics of leaves. I. Patterns of reflection from the epidermis,” Am. J. Bot. 71, 1391–1397 (1984).
[CrossRef]

Mohr, H.

L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
[CrossRef]

H. Mohr, P. Schopfer, Plant Physiology (Springer-Verlag, Berlin, 1995).

Mortenson, M. E.

M. E. Mortenson, Geometric Modeling (Wiley, New York, 1985).

Myneni, R.

M. M. Verstraete, B. Pinty, R. Myneni, “Understanding the biosphere from space: strategies to exploit remote sensing data,” in Physical Measurements and Signatures in Remote Sensing (Val d’Isére, France, 1994), pp. 993–1004.

Niklas, K. J.

K. J. Niklas, Plant Biomechanics: an Engineering Approach to Plant Form and Function (University of Chicago Press, Chicago, Ill., 1992).

Norman, J. M.

E. A. Walter-Shea, J. M. Norman, B. L. Blad, “Leaf bidirectional reflectance and transmittance in corn and soybean,” Remote Sensing Environ. 29, 161–174 (1989).
[CrossRef]

R. A. Bone, D. W. Lee, J. M. Norman, “Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants,” Appl. Opt. 24, 1408–1412 (1985).
[CrossRef] [PubMed]

Palmer, K. F.

Parkhurst, D. F.

D. F. Parkhurst, “Stereological methods for measuring internal leaf structure variables,” Am. J. Bot. 69, 31–39 (1982).
[CrossRef]

D. F. Parkhurst, “Internal leaf structure: a three-dimensional perspective,” in On the Economy of Plant Form and Function, T. J. Givnish, ed. (Cambridge U. Press, Cambridge, U.K., 1986), pp. 215–249.

Pedrini, G.

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, G. Schmuck, “Leaf optical properties experiment 93 (LOPEX93),” Technical Report EUR 16095 EN (European Commission, Joint Research Centre, Institute for Remote Sensing Applications, Ispra, Italy, 1995).

Petty, C. C.

Phu, P.

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sensing 28, 865–872 (1990).
[CrossRef]

Pinty, B.

M. M. Verstraete, B. Pinty, R. Myneni, “Understanding the biosphere from space: strategies to exploit remote sensing data,” in Physical Measurements and Signatures in Remote Sensing (Val d’Isére, France, 1994), pp. 993–1004.

Poulson, M. E.

M. E. Poulson, T. C. Vogelmann, “Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of oxalis,” Plant Cell Environ. 13, 803–811 (1990).
[CrossRef]

Remisowsky, A.

L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
[CrossRef]

Richardson, A. J.

Richter, T.

T. Richter, L. Fukshansky, “Authentic in vivo absorption spectra for chlorophyll in leaves as derived from in situ and in vitro measurements,” Photochem. Photobiol. 59, 237–247 (1994).
[CrossRef]

L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
[CrossRef]

Ritterbush, A.

L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
[CrossRef]

Romberger, J. A.

J. A. Romberger, Z. Hejnowicz, J. F. Hill, Plant Structure: Function and Development (Springer-Verlag, Berlin, 1993).

Ross, J. K.

J. K. Ross, A. L. Marshak, “The influence of leaf orientation and the specular component of leaf reflectance on the canopy bidirectional reflectance,” Remote Sensing Environ. 27, 251–260 (1989).
[CrossRef]

Sanders, H. T.

A. J. Stamm, H. T. Sanders, “Specific gravity of the wood substance of loblolly pine as affected by chemical composition,” Tappi 49, 397–400 (1966).

Schleter, J. C.

Schmuck, G.

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996).
[CrossRef]

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, G. Schmuck, “Leaf optical properties experiment 93 (LOPEX93),” Technical Report EUR 16095 EN (European Commission, Joint Research Centre, Institute for Remote Sensing Applications, Ispra, Italy, 1995).

J. Verdebout, S. Jacquemoud, G. Schmuck, “Optical properties of leaves: modelling and experimental studies,” in Imaging Spectrometry as a Tool for Environmental Observations, J. Hill, J. Mégier, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 169–191.
[CrossRef]

Schopfer, P.

H. Mohr, P. Schopfer, Plant Physiology (Springer-Verlag, Berlin, 1995).

Schreiber, M. M.

T. R. Sinclair, M. M. Schreiber, R. M. Hoffer, “Diffuse reflectance hypothesis for the pathway of solar radiation through leaves,” Agron. J. 65, 276–283 (1973).
[CrossRef]

Schurhoff, P. N.

P. N. Schurhoff, “Die Plastiden,” in Handbuch der Pflanzenanatomie (Gebrüder Borntraeger, Berlin, 1924).

Silva, L.

Sinclair, T. R.

T. R. Sinclair, M. M. Schreiber, R. M. Hoffer, “Diffuse reflectance hypothesis for the pathway of solar radiation through leaves,” Agron. J. 65, 276–283 (1973).
[CrossRef]

Smith, J. A.

T. W. Brakke, J. A. Smith, J. M. Harnden, “Bidirectional scattering of light from tree leaves,” Remote Sensing Environ. 29, 175–183 (1989).
[CrossRef]

Sparrow, E. M.

Stamm, A. J.

A. J. Stamm, H. T. Sanders, “Specific gravity of the wood substance of loblolly pine as affected by chemical composition,” Tappi 49, 397–400 (1966).

Steven, M. D.

F. M. Danson, M. D. Steven, T. J. Malthus, J. A. Clark, “High-spectral resolution data for determining leaf water content,” Int. J. Remote Sensing 13, 461–470 (1992).
[CrossRef]

Thompson, D. W.

D. W. Thompson, On Growth and Form (Cambridge U. Press, Cambridge, U.K., 1961).

Torrance, K. E.

Ustin, S. L.

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996).
[CrossRef]

Vanderbilt, V. C.

L. Grant, C. S. T. Daughtry, V. C. Vanderbilt, “Polarized and specular reflectance variation with leaf surface features,” Physiol. Plant. 88, 1–9 (1993).
[CrossRef]

Verdebout, J.

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996).
[CrossRef]

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, G. Schmuck, “Leaf optical properties experiment 93 (LOPEX93),” Technical Report EUR 16095 EN (European Commission, Joint Research Centre, Institute for Remote Sensing Applications, Ispra, Italy, 1995).

J. Verdebout, S. Jacquemoud, G. Schmuck, “Optical properties of leaves: modelling and experimental studies,” in Imaging Spectrometry as a Tool for Environmental Observations, J. Hill, J. Mégier, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 169–191.
[CrossRef]

Verstraete, M. M.

M. M. Verstraete, B. Pinty, R. Myneni, “Understanding the biosphere from space: strategies to exploit remote sensing data,” in Physical Measurements and Signatures in Remote Sensing (Val d’Isére, France, 1994), pp. 993–1004.

Y. M. Govaerts, M. M. Verstraete, “Evaluation of the capability of BRDF models to retrieve structural information on the observed target as described by a tridimensional ray tracing code,” in Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources, E. Mougin, K. J. Ranson, J. A. Smith, eds. Proc. SPIE 2314, 9–20 (1994).

Y. M. Govaerts, M. M. Verstraete, “Applications of the L-systems to canopy reflectance modeling in a Monte Carlo ray tracing technique,” in Fractals in Geoscience and Remote Sensing, G. G. Wilkinson, L. Kanellopoulos, J. Mégier, eds. (Joint Research Centre of the European Commission, Ispra, Italy, 1994), pp. 211–236.

Vogelmann, T. C.

T. C. Vogelmann, “Plant tissue optics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 231–251 (1993).
[CrossRef]

T. C. Vogelmann, G. Martin, “The functional significance of palisade tissue penetration of directional versus diffuse light,” Plant Cell Environ. 16, 65–72 (1993).
[CrossRef]

M. E. Poulson, T. C. Vogelmann, “Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of oxalis,” Plant Cell Environ. 13, 803–811 (1990).
[CrossRef]

T. C. Vogelmann, J. F. Bornman, S. Josserand, “Photo-synthetic light gradients and spectral reégime within leaves of Medicago sativa,” Philos. Trans. R. Soc. London Ser. B 323, 411–421 (1989).
[CrossRef]

T. C. Vogelmann, L. O. Bjorn, “Plants as light traps,” Physiol. Plant. 68, 704–708 (1986).
[CrossRef]

Volgemann, T. C.

G. Martin, S. A. Josserand, J. F. Bornman, T. C. Volgemann, “Epidermal focussing and the light microenvironment within leaves of Medicago sativa,” Physiol. Plant. 76, 485–492 (1989).
[CrossRef]

Walter-Shea, E. A.

E. A. Walter-Shea, J. M. Norman, B. L. Blad, “Leaf bidirectional reflectance and transmittance in corn and soybean,” Remote Sensing Environ. 29, 161–174 (1989).
[CrossRef]

Weiner, V. R.

Wergin, W. P.

T. W. Brakke, W. P. Wergin, E. F. Erbe, J. M. Harnden, “Seasonal variation in the structure and red reflectance of leaves from yellow poplar, red oak, and red maple,” Remote Sensing Environ. 43, 115–130 (1993).
[CrossRef]

Williams, D.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).

Agri. Forest Meteorol. (1)

T. W. Brakke, “Specular and diffuse components of radiation scattered by leaves,” Agri. Forest Meteorol. 71, 283–295 (1994).
[CrossRef]

Agron. J. (1)

T. R. Sinclair, M. M. Schreiber, R. M. Hoffer, “Diffuse reflectance hypothesis for the pathway of solar radiation through leaves,” Agron. J. 65, 276–283 (1973).
[CrossRef]

Am. J. Bot. (3)

D. F. Parkhurst, “Stereological methods for measuring internal leaf structure variables,” Am. J. Bot. 69, 31–39 (1982).
[CrossRef]

R. L. Hulbary, “The influence of air spaces on the three-dimensional shapes of cells in Elodea stems, and a comparison with pith cells of Ailanthus,” Am. J. Bot. 31, 561–580 (1944).
[CrossRef]

J. H. McClendon, “The micro-optics of leaves. I. Patterns of reflection from the epidermis,” Am. J. Bot. 71, 1391–1397 (1984).
[CrossRef]

Annu. Rev. Plant Physiol. Plant Mol. Biol. (1)

T. C. Vogelmann, “Plant tissue optics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 231–251 (1993).
[CrossRef]

Appl. Opt. (5)

IEEE Trans. Geosci. Remote Sensing (1)

Q. Ma, A. Ishimaru, P. Phu, Y. Kuga, “Transmission, reflection and depolarization of an optical wave for a single leaf,” IEEE Trans. Geosci. Remote Sensing 28, 865–872 (1990).
[CrossRef]

Int. J. Remote Sensing (1)

F. M. Danson, M. D. Steven, T. J. Malthus, J. A. Clark, “High-spectral resolution data for determining leaf water content,” Int. J. Remote Sensing 13, 461–470 (1992).
[CrossRef]

J. Opt. Soc. Am. (4)

Methods Enzymol. (1)

H. K. Lichtenthaler, “Chlorophylls and carotenoids: pigments of photosynthetic biomembranes,” Methods Enzymol. 148, 350–382 (1987).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B (1)

T. C. Vogelmann, J. F. Bornman, S. Josserand, “Photo-synthetic light gradients and spectral reégime within leaves of Medicago sativa,” Philos. Trans. R. Soc. London Ser. B 323, 411–421 (1989).
[CrossRef]

Photochem. Photobiol. (3)

L. Fukshansky, V. Martinez, A. Remisowsky, J. McClendon, A. Ritterbush, T. Richter, H. Mohr, “Absorption spectra of leaves corrected for scattering and distributional error: a radiative transfer and absorption statistics treatment,” Photochem. Photobiol. 57, 538–555 (1993).
[CrossRef]

T. Richter, L. Fukshansky, “Authentic in vivo absorption spectra for chlorophyll in leaves as derived from in situ and in vitro measurements,” Photochem. Photobiol. 59, 237–247 (1994).
[CrossRef]

H. Gabrys-Mizera, “Model considerations of the light conditions in noncylindrical plant cells,” Photochem. Photobiol. 24, 453–461 (1976).
[CrossRef]

Physiol. Plant. (3)

T. C. Vogelmann, L. O. Bjorn, “Plants as light traps,” Physiol. Plant. 68, 704–708 (1986).
[CrossRef]

G. Martin, S. A. Josserand, J. F. Bornman, T. C. Volgemann, “Epidermal focussing and the light microenvironment within leaves of Medicago sativa,” Physiol. Plant. 76, 485–492 (1989).
[CrossRef]

L. Grant, C. S. T. Daughtry, V. C. Vanderbilt, “Polarized and specular reflectance variation with leaf surface features,” Physiol. Plant. 88, 1–9 (1993).
[CrossRef]

Plant Cell Environ. (2)

T. C. Vogelmann, G. Martin, “The functional significance of palisade tissue penetration of directional versus diffuse light,” Plant Cell Environ. 16, 65–72 (1993).
[CrossRef]

M. E. Poulson, T. C. Vogelmann, “Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of oxalis,” Plant Cell Environ. 13, 803–811 (1990).
[CrossRef]

Remote Sensing Environ. (7)

T. W. Brakke, J. A. Smith, J. M. Harnden, “Bidirectional scattering of light from tree leaves,” Remote Sensing Environ. 29, 175–183 (1989).
[CrossRef]

E. A. Walter-Shea, J. M. Norman, B. L. Blad, “Leaf bidirectional reflectance and transmittance in corn and soybean,” Remote Sensing Environ. 29, 161–174 (1989).
[CrossRef]

J. K. Ross, A. L. Marshak, “The influence of leaf orientation and the specular component of leaf reflectance on the canopy bidirectional reflectance,” Remote Sensing Environ. 27, 251–260 (1989).
[CrossRef]

S. Jacquemoud, F. Baret, “prospect: a model of leaf optical properties spectra,” Remote Sensing Environ. 34, 75–91 (1990).
[CrossRef]

S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, “Estimating leaf biochemistry using the prospect leaf optical properties model,” Remote Sensing Environ. 56, 194–202 (1996).
[CrossRef]

F. Baret, S. Jacquemoud, G. Guyot, C. Leprieur, “Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands,” Remote Sensing Environ. 41, 133–142 (1992).
[CrossRef]

T. W. Brakke, W. P. Wergin, E. F. Erbe, J. M. Harnden, “Seasonal variation in the structure and red reflectance of leaves from yellow poplar, red oak, and red maple,” Remote Sensing Environ. 43, 115–130 (1993).
[CrossRef]

Tappi (1)

A. J. Stamm, H. T. Sanders, “Specific gravity of the wood substance of loblolly pine as affected by chemical composition,” Tappi 49, 397–400 (1966).

Other (20)

Y. M. Govaerts, M. M. Verstraete, “Applications of the L-systems to canopy reflectance modeling in a Monte Carlo ray tracing technique,” in Fractals in Geoscience and Remote Sensing, G. G. Wilkinson, L. Kanellopoulos, J. Mégier, eds. (Joint Research Centre of the European Commission, Ispra, Italy, 1994), pp. 211–236.

M. Born, E. Wolf, Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).

A. S. Glassner, “Surface physics for ray tracing,” in Introduction to Ray Tracing, A. S. Glassner, ed. (Academic, London, 1989), pp. 121–160.

K. J. Niklas, Plant Biomechanics: an Engineering Approach to Plant Form and Function (University of Chicago Press, Chicago, Ill., 1992).

K. Esau, Plant Anatomy (Wiley, New York, 1965).

D. W. Lee, “Unusual strategies of light absorption in rain-forest herbs,” in On the Economy of Plant Form and Function, T. J. Givnish, ed. (Cambridge U. Press, Cambridge, U.K., 1986), pp. 105–131.

P. N. Schurhoff, “Die Plastiden,” in Handbuch der Pflanzenanatomie (Gebrüder Borntraeger, Berlin, 1924).

B. Hosgood, S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, G. Schmuck, “Leaf optical properties experiment 93 (LOPEX93),” Technical Report EUR 16095 EN (European Commission, Joint Research Centre, Institute for Remote Sensing Applications, Ispra, Italy, 1995).

M. M. Verstraete, B. Pinty, R. Myneni, “Understanding the biosphere from space: strategies to exploit remote sensing data,” in Physical Measurements and Signatures in Remote Sensing (Val d’Isére, France, 1994), pp. 993–1004.

Y. M. Govaerts, M. M. Verstraete, “Evaluation of the capability of BRDF models to retrieve structural information on the observed target as described by a tridimensional ray tracing code,” in Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources, E. Mougin, K. J. Ranson, J. A. Smith, eds. Proc. SPIE 2314, 9–20 (1994).

D. M. Gates, Biophysical Ecology (Springer-Verlag, New York, 1980).
[CrossRef]

D. F. Parkhurst, “Internal leaf structure: a three-dimensional perspective,” in On the Economy of Plant Form and Function, T. J. Givnish, ed. (Cambridge U. Press, Cambridge, U.K., 1986), pp. 215–249.

J. Verdebout, S. Jacquemoud, G. Schmuck, “Optical properties of leaves: modelling and experimental studies,” in Imaging Spectrometry as a Tool for Environmental Observations, J. Hill, J. Mégier, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 169–191.
[CrossRef]

G. Haberlandt, “Optical sense-organs,” in Physiological Plant Anatomy, G. Haberlandt, ed. (Macmillan, London, 1914), pp. 613–631.

L. J. Gibson, M. F. Ashby, Cellular Solids, Structure and Properties (Pergamon, Oxford, 1988).

H. Mohr, P. Schopfer, Plant Physiology (Springer-Verlag, Berlin, 1995).

D. W. Thompson, On Growth and Form (Cambridge U. Press, Cambridge, U.K., 1961).

J. A. Romberger, Z. Hejnowicz, J. F. Hill, Plant Structure: Function and Development (Springer-Verlag, Berlin, 1993).

M. E. Mortenson, Geometric Modeling (Wiley, New York, 1985).

T. W. Brakke, “Goniometric measurements of light scattered in the principal plane from leaves,” in International Geoscience and Remote Sensing Symposium (IEEE, New York, 1992), pp. 508–510.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(A) Schematic representation of a mesophyll leaf cell showing the complexity of the different membranes. (B) For modeling purposes, the internal cell structure is represented as three homogeneous membranes.

Fig. 2
Fig. 2

Seven 14 hedra to show close packing.

Fig. 3
Fig. 3

Schematic transverse section through a dicotyledon leaf indicating the arrangement of tissues. Chloroplasts are drawn in one cell only of both palisade and spongy tissues.

Fig. 4
Fig. 4

Absorption coefficient in inverse nanometers of the various cell membranes.

Fig. 5
Fig. 5

(A) Top view of the cell arrangement for the epidermis. The shadowed area indicates the elementary lattice. (B) Transverse vertical section of the epidermis.

Fig. 6
Fig. 6

(A) Palisade cell is made of a cylinder with ellipsoid caps. (B) Paradermal section showing the arrangement in space. The shadowed triangle corresponds to the elementary lattice.

Fig. 7
Fig. 7

Perspective view of an artificial dicotyledon leaf. The size of the represented target is 300 μm × 300 μm × 170 μm.

Fig. 8
Fig. 8

Leaf bihemispherical reflectance and transmittance. The vertical distance between the two curves represents the absorptance. The solid curve represents the values corresponding to an epidermis with o e = 0.7 and the dashed curve with o e = 0.2.

Fig. 9
Fig. 9

Relative fluxes perpendicular to the leaf surface: net flux (solid curve), upward flux (dotted curve), downward flux (dashed curve). These fluxes were simulated at a wavelength of 675 nm.

Fig. 10
Fig. 10

Hemispherical reflectance R h , transmittance T h , and single scattering reflection R h s (dashed curve) for various illumination zenith angles (o e = 0.7).

Fig. 11
Fig. 11

Hemispherical reflectance R h , transmittance T h , and single scattering reflection R h s (dashed curve) for various illumination zenith angles (o e = 0.2).

Fig. 12
Fig. 12

Bidirectional reflectance and transmittance in the principal plane, in polar coordinates, for illumination angles of 0°, 15°, 30°, 45°, and 60°. The epidermis roughness parameter o e was set to 0.7, 0.4, and 0.2 for the rough, medium, and smooth cases presented in the left, central, and right columns, respectively.

Tables (2)

Tables Icon

Table 1 Structural Parameters Defining a Generic Virtual Dicotyledon Leafa

Tables Icon

Table 2 Statistics for the Leaf Biophysical Properties

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

2 π o e L e / 2 a e ( a e 2 - x 2 ) d x = 16 - 9 3 12 π a e 3 o e ,
V e = 4 3 π a e 3 o e - 3 ( 16 - 9 3 12 π a e 3 o e ) = 27 3 - 32 12 π a e 3 o e .
V p = π a p 2 ( h p + 4 a p o p 3 ) ,
ξ p = 1 - 3 18 3 h p + 4 a p h p + 2 a p .
N l = N e S e + N p S p + 1 S s N s + N e S e .
C w = v w ( α w e V e ¯ + α w p V p ¯ + α w s V s ¯ + α w e V e ¯ ) .
C c = v c ( α c e V e ¯ + α c p V p ¯ + α c s V s ¯ + α c e V e ¯ ) .
C p = c p ( n p p N p + n p s N s ) ,
Ω 2 R = Ω 1 - 2 ( Ω L Ω 1 ) Ω L ,
Ω 2 T = n 21 Ω 1 + Ω L ( n 21 ( - Ω L Ω 1 ) - { [ 1 + n 21 2 ( Ω L Ω 1 ) 2 - 1 ] } 1 / 2 ) ,
d a = - 1 k ln u 2 ,
f l = π N l N Δ Ω l ,             l = 1 , , m ,

Metrics