Abstract

Theoretical predictions suggest that soot particle size and local gas temperature affect both the spectral intensity and the temporal evolution of laser-induced incandescence. A discussion of both the physical structure and the theoretical absorption models of soot aggregates is presented, suggesting that the soot particle size relevant to laser-induced incandescence (LII) is the primary particle size regardless of whether the primary particle exists individually or is assembled into an aggregate. Experimental results of LII measurements in a laminar gas-jet flame with different signal collection strategies for the LII are presented. These results suggest that (a) signal integration during the laser pulse is essential for minimizing particle size and local temperature bias in the LII signal, (b) signal integration times subsequent to the laser pulse produce a size and local gas-temperature-dependent bias in the LII signal with long integration times more sensitive to these effects, and (c) long wavelength detection produces less of a size and local gas-temperature-dependent bias than short wavelength detection.

© 1996 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Dec, A. O. zur Loye, D. L. Siebers, Soot Distribution in D.I. Diesel Engine using 2-D Imaging of Laser-Induced Incandescence, Elastic Scattering, and Flame Luminosity, SAE Tech. Paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).
    [CrossRef]
  2. J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, Quantitative Planar Soot Measurements in a D.I. Diesel Engine using Laser-Induced Incandescence and Light Scattering, SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
    [CrossRef]
  3. B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
    [CrossRef]
  4. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  5. C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
    [CrossRef]
  6. F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
    [CrossRef] [PubMed]
  7. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
    [CrossRef]
  8. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
    [CrossRef]
  9. R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
    [CrossRef]
  10. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
    [CrossRef]
  11. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  12. D. L. Hofeldt, Real-Time Soot Concentration Measurement Technique for Engine Exhaust Streams, SAE Tech Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
    [CrossRef]
  13. C. J. Dasch, “Continuous-wave probe laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
    [CrossRef] [PubMed]
  14. C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
    [CrossRef]
  15. A. D’Alessio, “Laser light scattering and fluorescence diagnostics of rich flames produced by gaseous and liquid fuels,” in Particulate Carbon, D. C. Siegla, G. W. Smith, eds. (Plenum, New York, 1981).
  16. R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
    [CrossRef]
  17. M. Kerker, The Scattering of Light (Academic, New York, 1969).
  18. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. R. Julien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).
  20. J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Crystallog. 20, 61–78 (1987).
    [CrossRef]
  21. U. O. Koylu, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
    [CrossRef]
  22. J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
    [CrossRef]
  23. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  24. R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp.1525–1532.
  25. R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–309 (1995).
    [CrossRef]
  26. R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
    [CrossRef]
  27. P.-E. Bengtsson, M. Alden, “C2 production and excitation in sooting flames using visible laser radiation: implications for diagnostics in sooting flames,” Combust. Sci. Technol. 77, 307–318 (1991).
    [CrossRef]
  28. F. Beretta, A. D’Alessio, A. D’Orsi, P. Minutolo, “U.V. and visible laser excited fluorescence from rich premixed and diffusion flames,” Combust. Sci. Technol. 85, 455–470 (1992).
    [CrossRef]
  29. D. S. Kliger, Ultrasensitive Laser Spectroscopy (Academic, New York, 1983).
  30. V. S. Letokhov, Nonlinear Laser Chemistry: IRMPD (Bristol, New York, 1985).
  31. A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1747–1754.
  32. E. A. Rolfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988).
    [CrossRef]

1996

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

1995

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–309 (1995).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

1994

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[CrossRef] [PubMed]

1993

U. O. Koylu, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
[CrossRef]

1992

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

F. Beretta, A. D’Alessio, A. D’Orsi, P. Minutolo, “U.V. and visible laser excited fluorescence from rich premixed and diffusion flames,” Combust. Sci. Technol. 85, 455–470 (1992).
[CrossRef]

1991

P.-E. Bengtsson, M. Alden, “C2 production and excitation in sooting flames using visible laser radiation: implications for diagnostics in sooting flames,” Combust. Sci. Technol. 77, 307–318 (1991).
[CrossRef]

1989

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

1988

E. A. Rolfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988).
[CrossRef]

1987

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Crystallog. 20, 61–78 (1987).
[CrossRef]

1984

1983

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

1977

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
[CrossRef]

Alden, M.

P.-E. Bengtsson, M. Alden, “C2 production and excitation in sooting flames using visible laser radiation: implications for diagnostics in sooting flames,” Combust. Sci. Technol. 77, 307–318 (1991).
[CrossRef]

Anderson, T. J.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1747–1754.

Benecchi, S.

Bengtsson, P.-E.

P.-E. Bengtsson, M. Alden, “C2 production and excitation in sooting flames using visible laser radiation: implications for diagnostics in sooting flames,” Combust. Sci. Technol. 77, 307–318 (1991).
[CrossRef]

Beretta, F.

F. Beretta, A. D’Alessio, A. D’Orsi, P. Minutolo, “U.V. and visible laser excited fluorescence from rich premixed and diffusion flames,” Combust. Sci. Technol. 85, 455–470 (1992).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Botet, R.

R. Julien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).

Choi, M. Y.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Cignoli, F.

D’Alessio, A.

F. Beretta, A. D’Alessio, A. D’Orsi, P. Minutolo, “U.V. and visible laser excited fluorescence from rich premixed and diffusion flames,” Combust. Sci. Technol. 85, 455–470 (1992).
[CrossRef]

A. D’Alessio, “Laser light scattering and fluorescence diagnostics of rich flames produced by gaseous and liquid fuels,” in Particulate Carbon, D. C. Siegla, G. W. Smith, eds. (Plenum, New York, 1981).

D’Orsi, A.

F. Beretta, A. D’Alessio, A. D’Orsi, P. Minutolo, “U.V. and visible laser excited fluorescence from rich premixed and diffusion flames,” Combust. Sci. Technol. 85, 455–470 (1992).
[CrossRef]

Dasch, C. J.

Dec, J. E.

J. E. Dec, A. O. zur Loye, D. L. Siebers, Soot Distribution in D.I. Diesel Engine using 2-D Imaging of Laser-Induced Incandescence, Elastic Scattering, and Flame Luminosity, SAE Tech. Paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).
[CrossRef]

Dietrich, D. L.

Dobbins, R. A.

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–309 (1995).
[CrossRef]

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp.1525–1532.

Dobbs, G. M.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1747–1754.

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1747–1754.

Faeth, G. M.

U. O. Koylu, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
[CrossRef]

Fletcher, R. A.

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–309 (1995).
[CrossRef]

Gupta, S.

Harrington, J. E.

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Hofeldt, D. L.

D. L. Hofeldt, Real-Time Soot Concentration Measurement Technique for Engine Exhaust Streams, SAE Tech Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

Horvath, J. J.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Hurd, A. J.

J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Crystallog. 20, 61–78 (1987).
[CrossRef]

Julien, R.

R. Julien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).

Kerker, M.

M. Kerker, The Scattering of Light (Academic, New York, 1969).

Kliger, D. S.

D. S. Kliger, Ultrasensitive Laser Spectroscopy (Academic, New York, 1983).

Koylu, U. O.

U. O. Koylu, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
[CrossRef]

Ku, J. C.

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Lee, K.-O.

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Lee, T. W.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, Nonlinear Laser Chemistry: IRMPD (Bristol, New York, 1985).

Litzinger, T. A.

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, Quantitative Planar Soot Measurements in a D.I. Diesel Engine using Laser-Induced Incandescence and Light Scattering, SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

Lu, W.

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–309 (1995).
[CrossRef]

Martin, J. E.

J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Crystallog. 20, 61–78 (1987).
[CrossRef]

Megaridis, C. M.

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

Melton, L. A.

Minutolo, P.

F. Beretta, A. D’Alessio, A. D’Orsi, P. Minutolo, “U.V. and visible laser excited fluorescence from rich premixed and diffusion flames,” Combust. Sci. Technol. 85, 455–470 (1992).
[CrossRef]

Mitchell, D. L.

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, Quantitative Planar Soot Measurements in a D.I. Diesel Engine using Laser-Induced Incandescence and Light Scattering, SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

Pinson, J. A.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, Quantitative Planar Soot Measurements in a D.I. Diesel Engine using Laser-Induced Incandescence and Light Scattering, SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

Quay, B.

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

Rolfing, E. A.

E. A. Rolfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988).
[CrossRef]

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, Quantitative Planar Soot Measurements in a D.I. Diesel Engine using Laser-Induced Incandescence and Light Scattering, SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp.1525–1532.

Semerjian, H. G.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp.1525–1532.

Shaddix, C. E.

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Shim, K.-H.

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Siebers, D. L.

J. E. Dec, A. O. zur Loye, D. L. Siebers, Soot Distribution in D.I. Diesel Engine using 2-D Imaging of Laser-Induced Incandescence, Elastic Scattering, and Flame Luminosity, SAE Tech. Paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).
[CrossRef]

Smyth, K. C.

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Yeh, T. T.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

Zhou, Z.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Zizak, G.

zur Loye, A. O.

J. E. Dec, A. O. zur Loye, D. L. Siebers, Soot Distribution in D.I. Diesel Engine using 2-D Imaging of Laser-Induced Incandescence, Elastic Scattering, and Flame Luminosity, SAE Tech. Paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).
[CrossRef]

Appl. Opt.

Combust. Flame

R. A. Dobbins, R. A. Fletcher, W. Lu, “Laser-microprobe analysis of soot precursor particles and carbonaceous soot,” Combust. Flame 100, 301–309 (1995).
[CrossRef]

R. J. Santoro, H. G. Semerjian, R. A. Dobbins, “Soot particle measurements in diffusion flames,” Combust. Flame 51, 203–218 (1983).
[CrossRef]

B. Quay, T. W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 394–395 (1994).
[CrossRef]

C. E. Shaddix, J. E. Harrington, K. C. Smyth, “Quantitative measurements of enhanced soot production in a flickering methane/air diffusion flame,” Combust. Flame 99, 723–732 (1994).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–204 (1995).
[CrossRef]

Combust. Sci. Technol.

R. J. Santoro, T. T. Yeh, J. J. Horvath, H. G. Semerjian, “The transport and growth of soot particles in laminar diffusion flames,” Combust. Sci. Technol. 53, 89–115 (1987).
[CrossRef]

P.-E. Bengtsson, M. Alden, “C2 production and excitation in sooting flames using visible laser radiation: implications for diagnostics in sooting flames,” Combust. Sci. Technol. 77, 307–318 (1991).
[CrossRef]

F. Beretta, A. D’Alessio, A. D’Orsi, P. Minutolo, “U.V. and visible laser excited fluorescence from rich premixed and diffusion flames,” Combust. Sci. Technol. 85, 455–470 (1992).
[CrossRef]

C. M. Megaridis, R. A. Dobbins, “Comparison of soot growth and oxidation in smoking and non-smoking ethylene diffusion flames,” Combust. Sci. Technol. 66, 1–16 (1989).
[CrossRef]

J. Appl. Crystallog.

J. E. Martin, A. J. Hurd, “Scattering from fractals,” J. Appl. Crystallog. 20, 61–78 (1987).
[CrossRef]

J. Appl. Phys.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman scattering diagnostics,” J. Appl. Phys. 48, 4473–4483 (1977).
[CrossRef]

J. Appl. Phys. B

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards measurement of soot volume fraction,” J. Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

J. Chem. Phys.

E. A. Rolfing, “Optical emission studies of atomic, molecular, and particulate carbon produced from a laser vaporization cluster source,” J. Chem. Phys. 89, 6103–6112 (1988).
[CrossRef]

J. Heat Transfer

U. O. Koylu, G. M. Faeth, “Radiative properties of flame-generated soot,” J. Heat Transfer 115, 409–417 (1993).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

J. C. Ku, K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
[CrossRef]

Other

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Twenty-Third Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1990), pp.1525–1532.

M. Kerker, The Scattering of Light (Academic, New York, 1969).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

R. Julien, R. Botet, Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).

J. E. Dec, A. O. zur Loye, D. L. Siebers, Soot Distribution in D.I. Diesel Engine using 2-D Imaging of Laser-Induced Incandescence, Elastic Scattering, and Flame Luminosity, SAE Tech. Paper 910224 (Society of Automotive Engineers, Warrendale, Pa., 1991).
[CrossRef]

J. A. Pinson, D. L. Mitchell, R. J. Santoro, T. A. Litzinger, Quantitative Planar Soot Measurements in a D.I. Diesel Engine using Laser-Induced Incandescence and Light Scattering, SAE Tech. Paper 932650 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

D. L. Hofeldt, Real-Time Soot Concentration Measurement Technique for Engine Exhaust Streams, SAE Tech Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
[CrossRef]

A. D’Alessio, “Laser light scattering and fluorescence diagnostics of rich flames produced by gaseous and liquid fuels,” in Particulate Carbon, D. C. Siegla, G. W. Smith, eds. (Plenum, New York, 1981).

D. S. Kliger, Ultrasensitive Laser Spectroscopy (Academic, New York, 1983).

V. S. Letokhov, Nonlinear Laser Chemistry: IRMPD (Bristol, New York, 1985).

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Conditional sampling for fuel and soot in CARS thermometry,” in Twenty-First Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1986), pp. 1747–1754.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental diagram. PMT, photomultiplier tube; H.V., high voltage. The burner chimney is not shown here.

Fig. 2
Fig. 2

Camera linearity.

Fig. 3
Fig. 3

Power dependence.

Fig. 4
Fig. 4

Spectrally resolved emission scans of the LII signal spatially integrated at axial heights of 58-, 38-, and 18-mm HAB. In each case the detection bandwidth was approximately 1.2 nm.

Fig. 5
Fig. 5

Temporal scans of the LII signal spatially integrated at axial heights of 58-, 38-, and 18-mm HAB.

Fig. 6
Fig. 6

Timing chart of the LII signal collection strategies considered as cases 1–6. See text for details.

Fig. 7
Fig. 7

Radial profiles of unnormalized LII intensity at a height of 38-mm HAB for the various temporal cases illustrated in Fig. 6 with the exception of case 6.

Fig. 8
Fig. 8

Radial profiles of normalized LII intensity at axial heights of 58-, 38-, and 18-mm HAB (columns) and at different detected wavelengths of 400, 500, and 600 nm (rows). Cases 1–3 are compared.

Fig. 9
Fig. 9

Radial profiles of normalized LII intensity at axial heights of 58-, 38-, and 18-mm HAB (columns) and at different detected wavelengths of 400, 500 and 600 nm (rows). Cases 1, 4 and 5 are compared.

Fig. 10
Fig. 10

Radial profiles of normalized LII intensity at a detected wavelength of 400-nm for axial heights of 58-, 38-, and 18-mm HAB. Cases 2, 3, and 6 are compared.

Metrics